ANALYSIS OF OXIDATIVE STRESS MARKERS MALONDIALDEHYDE, GLUTATHIONE, NITRIC OXIDE, AND PRORENNIN LEVEL IN PREECLAMPSIA PLACENTAL TISSUES

ANI RETNO PRIJANTI1,2, NELLY MARISSA1,3, RENI PARAMITA1,2, SARAH HUMAIRA1, ELDESTA NISA NABILA4, ANTHONY EKA WIJAYA5, ASIYAH NURUL FADILA5, YUDITIYA PURWOSUNU6

1Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia 10430. 2Department of Biochemistry and Molecular Biology, Centre of Hypoxia and Oxidative Stress Studies, FKUI, Jakarta, Indonesia 10430. 3Masters Programme of Biomedical Sciences, FKUI, Jakarta, Indonesia 10430. 4Loka Penelitian dan Pengembangan Biomedis, Provinsi Aceh, Indonesia. 5Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia 10430. 6Department of Obstetric & Gynaecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia 10430. Email: aniretno@gmail.com

ABSTRACT

Background: Preeclampsia was a syndrome of hypertension proteinuria in pregnant women. In failure of pseudo vasculogenesis, there is persistency of endothelial and smooth muscle cell of vessel wall in spiral artery. Spiral artery could not be replicated and develop normal placenta. Therefore, placenta had some oxidative stress. Endothelial cell has property to produce nitric oxide (NO) that can dilate vessel. Placenta also produces prorenin, to maintain vascular wall tone. In this study, we conduct research to reveal the concentration of prorenin and some oxidative stress markers in preeclampsia placenta.

Methods: This observational study was used case-control design. We search preeclampsia cases during September-December 2015. We collected placenta samples from Cipto Mangunkusumo and normal placenta from Budi Kemala Hospital. We used 30 preeclampsia placentas and 30 normal placentas. Markers measured were NO and prorenin. NO was measured using colorimetric assay kit (K262-200/ BioVision), and prorenin was measured using human prorenin enzyme-linked immunosorbent assay kit (ab157525/ Abcam). Glutathione (GSH) was measured using Ellman method and malondialdehyde (MDA) using Weill method.

Results: Prorenin concentration between normal and preeclampsia placenta was analyzed using Mann–Whitney and show that there had no significant difference between normal and preeclampsia placenta (p=0.23). Besides, NO data analyzed using independent t-test show significant differences between preeclampsia and normal placentas (p=0.001). The difference between normal and preeclampsia GSH concentration was not significant (p=0.757), besides the difference between normal and preeclampsia MDA concentration was significant (p=0.000).

Conclusion: NO concentration in preeclampsia placenta was increase, higher than normal placenta. There was no effect of preeclampsia on prorenin concentration and GSH. There was marked decrease of MDA in preeclampsia placenta.

Keywords: Preeclampsia, Placenta, Nitric oxide, Prorenin.

INTRODUCTION

Maternal mortality rate is still considered to a health problem. In year of 2012, maternal mortality rate was increased to become 35/100,000 alive birth. Previously, in 2007 it was 228/100,000 alive birth [1]. One of the main causes of maternal mortality was hypertension. Besides, one of the diseases during gestation that suffers hypertension is preeclampsia syndrome.

Preeclampsia syndrome is a symptoms that consists of hypertension and proteinuria during gestation [2]. Incidence of preeclampsia in the world was about 3% [2]. Otherwise, the ultimate cause of preeclampsia syndrome was still undebatable, some risk factors were considered to be the background of this syndrome: Antiphospholipid syndrome, gestation history of preeclampsia syndrome in family, diabetes mellitus, nullipara, obesity, over 40 years old, and hypertension [3].

Placenta is important organ to support normal pregnancy, because it becomes a connection between mother and fetus. Placenta was developed since 8-18 weeks of gestation as modified connecting channel and dilated also unresponsive to vasoconstrictors [4]. In preeclampsia, placentaion was proceed incompletely caused blood pressure increased and had low perfusion. Imbalance between circulate angiogenesis factors and maternal response will determine the clinical symptoms [5].

Nitric oxide (NO) acts as a strong vasodilator in pregnancies. Increase of intravascular lead vascular dilatation and increase of intravascular NO allow placental vessel dilated. Many researchers conducted to measure NO concentration in pregnancies, but the results were still in doubt.

Bonsaffoh in 2015 conducted study to compare serum NO concentration in non-preeclampsia and preeclampsia, showed result increase of serum NO in women with preeclampsia than non-preeclampsia. The elevation especially NO was increased in early onset than late onset [6]. Conversely, Saha in 2013 report that serum NO concentration was decreased in preeclampsia syndrome, this finding was parallel to Rodriguez finding that the decrease of inducible nitric oxide synthase activity (iNOS) in preeclampsia [6-8].

Another vascular marker that could be investigated in preeclampsia was prorenin. Prorenin is part of Renin-Angiotensin-Aldosterone system that mediates hypertension. Some researchers found prorenin in various concentrations in placental tissues of preeclampsia. Therefore, we conduct observation research to reveal the concentration of prorenin compared to some stress oxidative markers in preeclampsia placenta.
RESULTS AND DISCUSSION

NO measurement
NO derivatives were measured using colorimetric method. Average concentration of NO-derivatives in preeclampsia was 12.53 µM, besides normal was 12.083 µM. Statistical analysis using Mann–Whitney show significant differences between preeclampsia and normal placentas, p=0.002. Although in preeclampsia placentas NO concentrations were higher than a normal pregnancy.

Placental prorenin
Placental prorenin average concentration of preeclampsia was 5.7×10⁻² ng/ml. On the other, prorenin average concentration of normal placenta was 5.3×10⁻² ng/ml. Mann–Whitney statistical analysis shows that there was no significant difference of prorenin between preeclampsia and normal placentas (p=0.884).

Preeclampsia is a syndrome signed by hypertension and proteinuria, divided into two steps. First step appear before 20 weeks of gestation, there is an uncompleted changing in spiral is arteries that caused failure of placentation. Failure of placentation caused chronic uteroplacental ischemia. Second step, the systemic signs expressed according to maternal inflammation, imbalance of angiogenesis anti-angiogenesis [4,9]. Some of angiogenesis markers could be detected were vascular endothelial growth factor, but we focus on prorenin and NO. Marker for hypoxia and oxidative stress caused by hypoxia were MDA, GSH, and enzymes such as superoxide dismutase, peroxidase, thioredoxin system, and catalase; we focus on MDA and GSH.

In this study, we found that preeclampsia placentas NO concentration significantly higher than non-preeclampsia (normal) placentas (Fig. 1). Shaamash et al. report showed that there was higher NOS activity and NO production in preeclampsia and preeclampsia [13]. Besides, Adu-bonsaffoh et al. also report that there was an increase of NO in preeclampsia higher than non-preeclampsia [6]. Otherwise, Ehsanipoor found that there was a decreased of placental NO and heme oxygenase-I. Furthermore, Ehsanipoor also found that the decrease of NO was influenced by placental dimethylarginine dimethylaminotransferase (DDAH-H and DDAH-II) [14]. Another study, No et al. report that preeclampsia e-NOS expression was lower compared to normal placenta [15].

Nitric oxide is a strong vasodilator to act on placental vessel relaxation lead to adequate placental blood flow. This was proved by inhibition of NO will increased blood pressure of uterine arteries [16]. NO was produced by eNOS and iNOS. In gestation, eNOS expression was increased, serum NO concentration was increased according to gestational age, and will be decreased into concentration before gestation after 12 weeks after birth [17]. Decreased NO concentration in circulation and placental was conversely to the increased concentration of H₂O₂ marker of oxidative stressed in placentas [18].
In a normal pregnancy, prorenin mRNA relative expression was found in chorion, decidua, and placenta [19]. Gestation without complication of hypertension, serum prorenin concentration was increased following the gestational age. In the third trimester, the decrease of prorenin concentration was correlated to complication of gestational hypertension [20]. In this study, preeclampsia placental prorenin concentration had no significant difference than normal, but tends to decreased.

Renin-angiotensin system play role in blood pressure control mechanism and electrolyte balance. Prorenin is an inactive precursor of renin and has concentration 10 times higher than renin. Prorenin activation mechanism to be renin needs proteolytic cleavage by protease, and also by a non-proteolytic mechanism through regulation of pH and temperature [21].

We found that MDA concentration in early and late preeclampsia tissues was very low. We suggest that in preeclampsia placenta the amount of reactive oxygen species was very low (Fig. 4) and not enough to stimulate signal transduction for placental growth and development. However, GSH level in placentas shows no difference between normal and preeclampsia. We assumed that GSH level was not change because there was no GSH usage by ROS.

Fig. 2: Prorenin protein expression of placental tissue (ng/ml). There was no significant difference of prorenin protein concentration between preeclampsia and normal placenta (p=0.23)

Fig. 3: Glutathione (GSH) concentration in placenta. There was no significant difference of GSH between normal pregnancy, late, and early preeclampsia placentas (µg/mg) (Kruskal-Wallis, p=0.757)

CONCLUSION

Concentration of nitric oxide of preeclampsia was higher significantly than normal placenta. There was no significant difference of prorenin between preeclampsia and normal placenta, and decrease of GSH usage that may cause by decrease markedly of ROS production.

ACKNOWLEDGMENTS

We wish to express our gratitude to Directorate of Research and Public Service University of Indonesia, for the PITTA 2016 Research Grant.

REFERENCES

production in normal pregnancy, pre-eclampsia and eclampsia. Int J