Pengaruh Pelapisan HNO₃ Terhadap Densitas Komposit Lamina Isotropik Al/Al₂O₃-Al/Sic

Widyastuti¹, Anne Zulfiqar, Dedi P², Johny W³, Eddy S. Siradj⁴
1. Jurusan Teknik Material dan Metalurgi FTI ITS Surabaya
2. Departemen Metalurgi dan Material FT UI Depok
Email: wiwik_material@yahoo.com

Abstrak

Pada proses pembuatan komposit lamina isotropik, ikatan antar lapisan komposit sangat menentukan kualitas komposit secara keseluruhan. Rekayasa permukaan penguat diberapkan menjadi salah satu metode untuk meningkatkan kualitas ikatan antar layer. Salah satu identifikasi peningkatan kualitas ikatan antar lapisan adalah terjadinya peningkatan deritas komposit lamina. Analisis dilakukan untuk mengetahui pengaruh pelapisan HNO₃ pada daerah lamina terhadap densitas komposit dibandingkan dengan komposit lamina tanpa pelapisan HNO₃.

I. Pendahuluan

Komposit merupakan teknologi rekayasa material yang banyak dikembangkan dewasa ini, karena beberapa sifat keunggulannya yang sulit diperoleh apabila menggunakan material monolitik. Hal teresbut dikarenakan material komposit mampu mengubah beberapa sifat material yang berbeda karakteristiknya menjadi sifat yang baru dan sesuai dengan disain yang direncanakan. Pada perkembang selanjutnya komposit didisain bukan seperti struktural material monolitik yang mempunyai dua fase berbeda, tetapi merupakan tumpukan (stack) beberapa lapisan material komposit yang mempunyai jenis berbeda. Peran dari model struktur tersebut biasanya dirancang untuk memperoleh sifat ketahanan pada permukaan seperti ketahanan terhadap keausan, impak, korosif, dan ketahanan terhadap api. Model penumpukan lamina dengan jenis yang berbeda merupakan pengembangan dari perlakuan permukaan pada base material, yang biasanya dengan cara perlakuan permukaan dengan metode heat treatment dan coating surface. Teknologi penggabungan dua lapisan komposit yang berbeda karakteristiknya ini selama ini dilakukan dengan metode bonding diffusion, dimana pada proses tersebut dilakukan dengan menggunakan proses pemanasan dengan temperatur tinggi dan tegangan mekanik yang besar. Metode tersebut mempunyai beberapa kelemahan dengan bentuk produk yang terbatas, dan biaya produksi yang tinggi. Metode penggabungan dua lamina dengan temperatur tinggi, merupakan alternatif yang dapat disampaikan pada kalangan peneliti dibidang rekayasa material komposit dan industri karena beberapa keunggulan dalam kecepatan, keberagaman bentuk dan biaya produksi yang rendah.

II. Studi Pustaka

Lamina biasanya berkaitan dengan penyusunan struktural secara unidirectional fiber dalam matrik. Perubahan penyusunan struktur menjadi sangat penting karena fiber berfungsi sebagai agent pembawa beban sedangkan matriks berfungsi mendukung dan melindungi fiber serta memtransfer beban antara fiber yang rusak. Komposit laminasi komposit terbentuk dari lapisan-lapisan yang bervariasi. Sifat yang akan dikembangkan dari material komposit dibandingkan material pembentuk adalah kekuatan, kekakuan, berat, ketahanan fatigue, ketahanan aus, kemampuan isolasi panas, konduktifitas termal, ketahanan korosi, isolasi akustik dll, demikian juga dalam pengembangan komposit lamina.