INTRODUCTION

It has been reported that root fractures that occur as a result of dental trauma are more rare than those damaged in other ways. Root fractures comprise 0.5-7.0% of injuries in permanent teeth and 2.0-4.0% of injuries in milk teeth [1]. Depending on the location of the fracture line, root fractures that occur as a result of trauma are described as cervical, medium, or apical triple. Root fracture lines are classified as horizontal, oblique, vertical, and as horizontal/oblique. In addition, the type of root fracture is divided into single, complicated (≥2 fragments) and partial [1-9].

Horizontal root fractures are relatively uncommon, comprising 3% of all dental traumas and occurring more frequently in the maxillary incisors when root development is complete. It has been reported that recovery is experienced in 80% of cases, especially when horizontal root fractures are involved [3-5]. Vertical root fractures have a poor prognosis. Of all root fractures, the prevalence of these is 2-5% [6]. The fracture can affect the entire root or part of it [7,8]. Root fractures in teeth with incomplete root formation are referred to as sectional root fractures. These fractures are mostly observed as a single-side fracture and continue along the thin root canal wall of the immature root [9,10].

The formation of hard tissue between the fracture sections is the ideal recovery scenario for root fractures. However, other patterns of the desired recovery involve the connective tissue in conjunction with calcified tissue formation, and granulation tissue formation in [1,3,11]. It has been reported that in order for hard tissue formation to occur, the coronal fracture fragment must not be dislocated and pulp exposure should not occur. In addition, calcified tissue has frequently been observed in teeth whose root development is incomplete [12]. It has also been noted that regeneration of the pulp tissue on the same side of the fractured root section close to the pulp is similar to dentin, whereas that on the other side is similar to cement [13]. To the high recovery potential in young permanent teeth with root fracture is supported by this study.

CASE REPORT

An 8-year-old patient presented at the Department of Pediatric Dentistry owing to dental trauma. LUXATION AND OBlique root fractures to teeth (teeth numbers 11 and 21) with incomplete root development were demonstrated following a clinical and radiographical examination (Fig. 1). The child was treated with dental reposition. Fixation was applied to the adjacent primary canine teeth using a 0.4 mm full circle orthodontic wire for fractured teeth with a semi-rigid splint (Fig. 2). Stabilization of the teeth was ensured to protect the vitality of the fractured teeth. A splint was inserted under local anesthesia and removed a month later.

DISCUSSION

It has been demonstrated in the previous studies that root fractures affecting permanent dentition mostly occur in people aged 11-20 years, primarily affecting the maxillary central teeth. Root fractures are less common in teeth where the root development is incomplete than in teeth where the development is complete [9,14-16]. Root fracture occurred in the maxillary central teeth in this case, and where the root development of the teeth was incomplete. Bacterial contamination of the coronal fragment of the pulp considerably affects the recovery of...
Doğan et al.


Depending on the location of the root fracture and the ability of the patient to comply with recommendations, the application of a splint for 1-4 months is needed for teeth affected by root fracture due to dental trauma [18]. In our case, a splint was applied for 1 month. The patient was also advised to avoid biting and discovering food with teeth affected by root fracture.

Feely et al. reported a statistically significant association between healing type and root fracture. They reported that a better prognosis was attributed to teeth whose root development was incomplete compared to that for teeth whose root development was complete [19]. We agree with Feely et al., due to our case treatment result. The objective of treating teeth with a root fracture is to protect pulpal vitality and to assist the tooth to regain its function. According to the findings of the previous studies, greater protection of pulpal vitality should be afforded to teeth whose root development is incomplete than that given to teeth with a closed apex [1,3,4]. If dental vitality cannot be protected, endodontic treatment must be initiated [4]. Pathology, that might have affected dental prognosis, was not observed following clinical and radiological assessment in our case there was no any pathological sign. In addition, we saw that root development had been sustained.

In previous studies, it was reported that pulpal necrosis developed in only 20-40% of permanent teeth with root fracture. The recovery of tooth function following root fracture is affected by the degree to which the root has been fractured, the status of the pulp tissue, occlusion, dislocation of the fractured parts, and the health status of the patient [5,20,21]. Root development was incomplete in our case. Thus, dental repositioning was performed, the distance between the fractured parts was minimized, and splinting was carried out. Fortunately, our patient did not have orthodontic problems. Accordingly, pulp vitality was preserved in the two teeth with root fractures. Flores et al. published a treatment guideline for fractures of the teeth and alveolar bone. According to this publication, good healing following an injury to the teeth and oral tissue is dependent on good oral hygiene. The patient should be instructed to brush his or her teeth with a soft brush and to rinse with chlorhexidine 0.1% as this prevents the accumulation of plaque and debris [22], and antimicrobial agents with anti-inflammatory agents advised for oral trauma cases [23,24].

Cvek et al. reported that a poor prognosis for root fracture was likely in teeth with a horizontal fracture in the cervical part of the root. Roughly 70% of these teeth had to be extracted. The poor success rate was attributed to the position of the soft tissue between the fragments as it decreased the ability of the coronal fragment to withstand the impact of mastication force [25]. Root fracture of our case was at the apical part this can be why healing has been seen.

Despite clinical success, the need for sound patient compliance and parental support to maintain oral hygiene is important [26]. Further identification of risk factors for traumatic dental injury is encouraged, and measures to prevent future trauma incidents, such as the creation of a safe physical environment for the child and a supportive social environment, are essential [27,28]. All of this advice from different references should be take in to consideration for healing proces.

CONCLUSION

The ideal recovery of tooth function in teeth with root fracture can be realized through suitable repositioning of the crown fragment, achieved by semi-rigid splinting and preventing the secession of the fractured fragments. In addition, patient compliance with the recommendations and ensuring oral hygiene are essential components of the recovery process.

REFERENCES