Image Segmentation

- Region-based, edge-based and boundary-based or threshold-based

Detection of discontinuities
- For 3x3 mask, the response of the mask at any point in the image below:
 - Point detection of isolated points is determined if $|R_i| > T$ then a point has been detected
 - Def. of isolated point: a point whose gray level is significantly different from its background

Line detection
- Move a specific mask around an image
- Preferred direction of each mask is weighted with a larger coefficient than other possible directions
- Use the mask associated with one direction and thresholds its output -- $|R_i| > |R_j|
 - Horizontal, vertical, and diagonal line

Point detection mask
(a) Point detection mask
(b) X-ray image of a turbine blade with a porosity
(c) Result of point detection
(d) Result of using eq. (10.1-2)
Example

Illustration of line detection
(a) Binary wire-bond mask
(b) Absolute value of result after processing with -45° line detector
(c) Result of thresholding image (b)

Edge detection
• the most common approach for detecting meaningful discontinuities in gray level

Basic formulation
- The difference between an edge (local) and boundary (global)
 - Edge: ability to measure gray-level transitions

- an ideal edge: a set of connected pixels
- Models of “step edge”, “ramp edge”, “roof edge”
 - Ramp edge: Edge blurring problem caused by: optics, sampling, and other image acquisition — “ramp-like” profile
 - The thickness of the ramp edge — determined by the length of the ramp

Ideal digital & ramp edge
(a) Model of an ideal digital edge
(b) Model of a ramp edge.
 The slope of the ramp is proportional to the degree of blurring in the edge

Example

(a) Two regions separated by a vertical edge
(b) Detail near the edge, showing a gray-level profile, and the first and second derivatives of the profile

Random Gaussian noise:
Mean = 0
(a) σ=0
(b) σ=0.1
(c) σ=1.0
(d) σ=10.0

Gradient operators
- First derivative operator based on approximation of 2-D gradient operator
- The gradient of an image \(f(x,y) \) at location \((x,y) \) is defined as:
 \[
 \left[\begin{array}{c} G_x \vspace{10pt} \\ G_y \end{array} \right] = \nabla f(x,y) = \left[\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right]
 \]
- The magnitude of this vector is denoted as \(\sqrt{G_x^2 + G_y^2} \)
- The direction of this is perpendicular to the direction of an edge direction
 \[
 \alpha(x,y) = \tan^{-1}\left(\frac{G_y}{G_x} \right)
 \]
- Robert cross-gradient operator
 - First order derivative
- Prewitt operator
- Sobel operator
 - Use a weight of 2 in the center coefficient to achieve smoothing by giving more importance to the center point
 - Have superior noise suppression to Prewitt operator
 - Harder to implement than Prewitt operator ∇f

- Approximate the gradient operator by absolute values
 - The approximation will not be isotropic (invariant to rotation)
- The Laplacian operator $\nabla^2 f$
 - Is a second-order derivative defined as
 - For a 3×3 region $\nabla^2 f = f_{ij} - f_{x} - f_{y} + f_{xx} + f_{yy}$
 - A digital approximation including the diagonal neighbor is given by $\nabla^2 f = f_{ij} - f_{x} - f_{y} + f_{xx} + f_{yy}$

Edge detector masks

Prewitt and Sobel masks for diagonal edges

Gradient operators

With smoothing (5×5) averaging

Diagonal edge detection
- Is not used in its original form for edge detection
- Is unacceptably sensitive to noise
- Produces double edges, complicate segmentation
- Is unable to detect edge direction

Consists of:
- Use its zero crossing for edge location
- Use it for the complementary purpose of establishing whether a pixel is on the dark or light region of an edge

The Laplacian operator is combined with smoothing as a precursor to finding edge via zero crossing

Consider the function (Laplacian Gaussian)
- This approximation is not unique
- Capture the essential shape of \(\nabla^2 (\sigma^2 r^2 e^{-\sigma^2 r^2}) \)
- Smooth the image, and provide an image with zero crossing
- Sometime it is called the Mexican hat functions

\[\nabla^2 (\sigma^2 r^2 e^{-\sigma^2 r^2}) \]

Zero crossing image are thinner than the gradient edges

Drawbacks:
- Form numerous closed loops (Spaghetti’s effect in Fig. 10.15.g)
- The computation

Advantages:
- Noise reduction and strong/robust performance
- Edge-finding based on gradient still are used

Example

(a) Original image
(b) Sobel gradient (shown for comparison)
(c) Spatial Gaussian smoothing function
(d) Laplacian mask
(e) LoG
(f) Thresholded LoG
(g) Zero crossings

EXAMPLE

(a) Input image
(b) \(G_x \) component of the gradient
(c) \(G_y \) component of the gradient
(d) Result of edge linking

Edge linking and boundary detection
- Characterize an edge completely because of noise, break in the edge from non-uniform illumination, and other effects that introduce spurious intensity discontinuities
- Edge detection operators are followed by linking procedures to assemble pixels into meaningful edges or contours

Local processing
- Analyze the characteristics of pixels in a small neighborhood about every point \((x,y)\) in a small neighborhood
- All points that are similar according to a set of criteria: (1) the strength of the response of the gradient operator; (2) the direction of the gradient operator
- Similar in magnitude to the pixel at \((x,y)\) if \(\nabla^2 (\sigma^2 r^2 e^{-\sigma^2 r^2}) \)
- The predefined neighbor of \((x,y)\) is similar in edge direction to the pixel at \((x,y)\) if \(\nabla^2 (\sigma^2 r^2 e^{-\sigma^2 r^2}) \)
- A point in the neighborhood of \((x,y)\) is linked to the pixel \((x,y)\) if both magnitude and direction are satisfied
Global processing via the Hough Transform

- Points are linked by determining first if they lie on a curve of specified shape
- Find subsets if points lie on straight line
 - find all lines determined by every pair of points and find all subsets of points that are close to particular lines
- Accumulator cell
 - the number of subdivision determine the accuracy of co-linearity
 - using the line $y = ax + b$ to represent a line is that the slope approaches infinity as line approaches the vertical
 - Complexity equals to nK (K. increments, n pixels)
- Problem caused by coordinates
 - a line that the slope approaches infinity--vertical line

Parameter space

(a) xy-plane
(b) Parameter space

Subdivision for Hough Transform

- Subdivision of the parameter plane for use in the Hough transform

- Solution: use normal representation of a line
 - $x \cos \theta + y \sin \theta = \rho$
 - the loci are sinusoidal curves that intersect at (ρ_i, θ_j)
 - the range of angle θ is $\pm 90^\circ$
 - the horizontal line has $\theta = 0^\circ$

- Hough transform is applicable to $g(y;c)=0$ For example, the points lying on the circle
 - The complexity is proportional to the number of coordinates and coefficients in a given functional representation

- Edge linking problem based on the Hough transform
 - compute the gradient and threshold it to obtain a binary image
 - specify the subdivision (cells)
 - examine the counts of the accumulator cells
 - examine the relationship (continuity) between pixels in a chosen cell
Example

Global processing via Graphic-theoretic technique
- Global approach for edge detection and linking based on representing edge segments in the form of a graph and search the graph for low cost path
- Provides a rugged approach that performs well in the presence of noise
- Directed graph \(G = (N(U, V)) \)
 - a successor of the parent node
 - the cost of the entire path is
 - edge element: the boundary between pixels \(p \) and \(q \)
 - cost of edge element by pixel \(p \) and \(q \) defined as \(c(p, q) = H - (f(p) - f(q)) \) (\(H \) is the highest gray-level)
 - Sacrifice optimality for the sake of speed

Heuristic algorithm
- Does not guarantee a minimum-cost path; its advantage is speed
- Yield an optimal path only if \(h(n) \) is a lower bound on the cost of the minimum-cost path; the path is constrained to node \(n \) and \(r(n) = H(n) + g(n) \)
- If no heuristic information is available - uniform-cost algorithm of Dijkstra

Heuristic algorithm
- Does not guarantee a minimum-cost path; its advantage is speed
- Yield an optimal path only if \(h(n) \) is a lower bound on the cost of the minimum-cost path; the path is constrained to node \(n \) and \(r(n) = H(n) + g(n) \)
- If no heuristic information is available - uniform-cost algorithm of Dijkstra
Thresholding

Foundation
- Thresholding of Bimodal type histogram: single threshold
 - Single thresholding and Multilevel thresholding
 - Thresholding may be viewed as an operation that involves tests against a function T of the form $T=f(x,y)$.
 - Global threshold depends on $f(x,y)$
 - Local threshold $g(x,y)$ and $f(x,y)$
 - Dynamic (or adaptive) threshold depends on the spatial coordinates x and y

The role of illumination
- The reflection function $r(x,y)$
 - The product of illumination and reflection cause the valley of histogram eliminated, and make segmentation by a single impossible
 - Poor illumination problem: seldom work with reflection function
 - The image resulting from poor illumination could be quite difficult to segment

1. Object and background occupy comparable areas, then T is the average gray value of the image
2. Object are small comparable to background, then the average value is not a good estimate, T is a midway between the maximum and minimum gray levels.

- the distorted histogram $f(x,y)=i(x,y)\cdot r(x,y)$
- then $z(x,y)=\ln f(x,y) = \ln i(x,y) + \ln r(x,y)$
 - the histogram of $z(x,y)$ is given by the convolution of $i'(x,y)$ and $r'(x,y)$
 - if $i'(x,y)$ were constant, $i'(x,y)$ would be constant also, its histogram would be a simple spike (impulse)
 - if $i'(x,y)$ had a broader histogram (resulting from non-uniform illumination), the convolution process would smear the histogram of $r'(x,y)$

Basic global thresholding
- The simplest of thresholding—partition the image histogram by using a global threshold
- Segmentation is accomplished by
 - Scanning the image pixel
 - Labeling each pixel depending on whether the gray level of that pixel is greater or less than T
threshold by using a heuristic approach, based on the visual inspection of the histogram:
- Select an initial estimate for T
- Segment the image using $T(G_1, G_2)$
- Compute the average gray level values
- Compute a new threshold: $T = 1/2(\mu_1 + \mu_2)$
- Repeat steps 2 and 4 until the difference in T is smaller than a predefined T_0 (convergence)
- In general, a good initial value for T is the average gray level of the image
- When objects are small compared to the area occupied by the background, average value is not a good initial value.

Basic adaptive thresholding:
- uneven illumination causes a histogram that cannot be partitioned by a global threshold
 - Solution: (1) divide the original image into sub-images; (2) utilize a different threshold to segment each sub-image
 - How to divide an image? and
 - How to estimate the threshold?
 - Threshold depends on the location of the pixel in terms of sub-images

Example
- do not contain a boundary between object and background: variances < 75
- 75 < variance < 100 — composite image
- contains a boundary: variances > 100
 - using the threshold discussed in the previous section
 - the initial T was selected at the point midway between the minimum and the maximum
Optimal global and adaptive thresholding

- A method for estimating thresholds that produce the minimum average segmentation error
 - Histogram may be considered as probability density function (PDF), $p(z)$
 - The overall density function is the sum or mixture of two densities
 - If the form of the densities is known, it is possible to determine an optimal threshold
 - The mixture probability density function is $p(z)=P_1p_1(z)+P_2p_2(z)$
 - An image is segmented by classifying as background all pixels with gray level is greater than a threshold T
 - Objective: select the value of T that minimizes the average error

- Using measures based on gradient and Laplacian to deep the valley between histogram peak
 - The optimal threshold may be accomplished for other densities if the Rayleigh and log-normal densities

- Mean square error may be used to estimate a composite gray-level PDF of an image from the image histogram
 - For Example:
 - The mean square error E between $p(z)$ and the image histogram $h(z) = \frac{1}{n} \sum_{i=1}^{n} p(z_i) - h(z_i)$
 - Determine analytically that minimize this mean square error is not a simple matter

GL PDF (2 regions)

- For black object on a light background
- Estimating these densities is not feasible
 - Sol: employ densities whose parameters are reasonably simple to obtain
 - One of the principal densities is Gaussian density
 - Two threshold values may be required to obtain the optimal solution
 - If the variances are equal, a single threshold is sufficient (10-3.14)
 - If $P_1=P_2$, the optimal threshold is the average of the means

Use of boundary characteristics for histogram improvement and local thresholding

- "Good" threshold are enhanced considerably if the histogram peaks are tall, narrow, and separated by deep valleys
- Improve the shape of histogram by considering only those pixels that lie on or near the edges
 - If histogram of the pixel on or near the edge between objects and background were used: improve the symmetry of the histogram peak
 - The histograms have peaks of approximately the same height
- Equal probability: improve the symmetry of the histogram peak
 $f(x,y) = \begin{cases} 0 & \text{if } \nabla f < T \\ + & \text{if } \nabla f \geq T \text{ and } \nabla f \geq 0 \\ - & \text{if } \nabla f \geq T \text{ and } \nabla f \leq 0 \end{cases}$
Threshold based on several variables

- Multi-spectral thresholding
 - 3-D histogram
 - Find clusters of points in 3-D space
 - Shortcoming
 - Cluster seeking becomes an increasingly complex

Region-based segmentation

Basic formulation
- segmentation must be complete; every pixel must be in a region
- points in a region must be connected
- the region must be disjointed
- the pixels in a segmented region \(P(R_i) = \text{TRUE} \) if all pixel in \(R_i \) have the same gray level
- \(P(R_i \cap R_j) = \text{FALSE} \) -- \(R_i \) an \(R_j \) is different

Region growing
- a procedure that groups pixel or sub-region into larger regions based on predefined start with a set of “seed” criteria-similar to the seed (specific gray-level or color)
 - points and from these grow regions by appending each seed
 - priori information is not available—compute the same set of properties
 - Criteria—gray-level, texture, color
 - the selection of similarity
 - For Ex: land-use satellite imagery depends on color

Example

- when the images are monochrome, carried out with set of descriptor based on gray levels and spatial properties (such as moments or textures)
 - The stopping rule
 - when on more pixels satisfy the criteria
 - addional criteria
 - utilize size, likeness between a candidate pixel and the pixels grown so far, and the shape of the region being grown (history of the growth)
 - seed points and seed regions (Fig 10.40)
 - If connectivity or adjacency information is not used, descriptor alone can yield misleading result

Region splitting and merging
- splitting
 - subdivide the entire region successively into smaller and smaller quadrant regions if \(P(R_i) = \text{FALSE} \)
 - quad tree — the root of the tree corresponds to the entire image and each node corresponds to a subdivision
only splitting causes the final partition would contain adjacent regions with identical properties can be solved by merging

Merging
- Is limited to groups of four blocks
- the splitting and merging steps
 - split into four disjoint quadrants
 - merge adjacent adjacent regions
 - stop when no further merging or splitting

Variations of the scheme
- Split the image into a set of blocks
- The advantage: use the same quad-tree for splitting and merging
- Texture segmentation

No further splitting
- The procedure is terminated by one final merging of regions satisfying step2
- The merged regions may be of different size
- Texture segmentation is based on the measures of texture

Segmentation by morphological watersheds
- Advantage of global thresholding speed
- Disadvantages of traditional segmentation: (1) the need to post-processing; (2) need edge linking for discontinuity
- The watershed segmentation is often produces stable segmentation results (continuous segmentation boundaries)

Basic concepts
- Based on visualizing an image in three-dimension: two spatial coordinates versus gray levels
- “Topographic” interpretation (three types of points):
 - Points belonging to a regional minimum
 - Points at which a drop of water (catchment basin or watershed)
 - Points at which water would be equally likely to fall to more than one such minimum (crest line on the topographic surface; divide line or watershed lines)
- The principal objective is to find the watershed lines
- Suppose that a hole is punched in each regional minimum and the entire topography is flooded
 - Water rise through the holes
 - Rising water in distinct catchment basin is about to merge
 - A dam is built to prevent the merging
- Reach when the tops of the dam are visible
Dam construction
- Based on binary images
- The simplest way
 - Construct dams separating sets of binary points based on morphological operations
- Use dilation
- Def of catchment basin and the sets of points in two regional minimum at stage n: $C_0(M_1)$ and $C_0(M_2)$
 - The two individual components extracted from q by performing the simple AND operation $q \cap C_0(M_2)$ becomes one connected component
 - Each of the connected components is dilated by the structuring element, subject to two conditions:
 - The dilation has to be constrained to q
 - The dilation cannot be performed on points that would cause the sets being dilated to merge

Flooding
- Original image
- Topographic view
- Two slopes of flooding
- Result of further flooding
- Beginning of merging of water from two catchment basins (a short dam was built between them)
- Longer dams
- Final watershed (segmentation)

Flooding (cont’d…)
- Two partially flooded catchment basins at stage $n — 1$ of flooding
- Flooding at stage n, showing that water has