After the acclimation period, the rats were categorized into two groups (each contain of 5 rats), received the same handling ad libitum. Animals were acclimated for at least 5 days in the laboratory. The animals were housed individually in stainless steel wire mesh cages. During the 17 days period, the animals were acclimated to 25-27°C, a 12 hrs light-dark cycle, and 40-60% relative humidity. The animals were kept in a room maintained under environmentally controlled conditions of temperature and humidity.

METHODS

Plant material and extraction
1 kg of A. catechu L. fresh nut was collected from A. catechu L. plantation in Aceh Besar Province, Indonesia, in September 2013. The nuts were gathered and cleaned from the dirt and pulp (wet sorting process). Seeds were washed under running water and then cleaned and drained. Afterward, these seeds were initially dried in open air, protected from direct sunlight, and then continued to the drying process in the oven at 50°C. The dried simplicia were crushed into powder using a blender and sifted with 20 meshes of sieves. The powder was kept in cleaned and sealed containers. The extract was prepared by diluting the powder in water in directly applicated dermally to the rats.

Animals
The experiments were performed using healthy young adult female Sprague-Dawley rats, nulliparous, non-pregnant and weighing 170-184 g, age 3-4 month. Female rats were chosen because of their sensitivity to treatment [10]. They were procured from Histology Laboratory of Faculty of Medicine, Indonesia University, Jakarta, Indonesia. All animals were put in stainless steel, open-mesh cages in a room maintained under environmentally controlled conditions of 25-27°C, a 12 hrs light-dark cycle, and 40-60% relative humidity. The rats were acclimated for at least 5 days in the laboratory. The animals were fed with standard laboratory animal food pellets with water ad libitum. After the acclimation period, the rats were categorized into two groups (each contain of 5 rats), received the same handling conditions as during the acclimation process, and put into individual cages. During the 17th to 20h hrs of fasting period, the rats were fed only with plain water. All procedures were conducted in accordance with the regulations of Indonesian law on animal experimentation. The animal experiments were approved by the ethic committee of Research Center for Biology, Cibinong, Bogor.

RESULTS

The acute dermal toxicity of A. catechu L. nut extract was investigated in rats, as per OECD Guidelines 402 for acute toxicity protocols. The body weight, possibility of death, general signs, and behavior activity parameters were measured for 14 days to ascertain the median lethal dose (LD50) of the extract. At the end of the study, all the animals in all the treated group were sacrificed.

Conclusion: A single dermal dose to A. catechu L. aqueous extract had no toxic effects on mortality, clinical signs, body weight changes, and gross findings in female rats at a dose of 15,000 mg/kg of body weight. Subsequently, the concentrate can be employed for pharmaceuticals nutrient plants.

INTRODUCTION

Areca catechu Linn. (family Palmaeae), commonly known as an important economical seed crop, is widely cultivated in tropical and subtropical areas including Aceh, a province that is located at the Northern end of Sumatra, Indonesia. In Aceh, A. catechu L. is traditionally masticated either alone or as a quid along with a large variety of ingredients, such as betel leaf (family Piperaceae), Uncaria gambir, and slaked lime for the traditional ceremonial, cultural role. Not only in Indonesia, areca nut is also usually used in betel chewing common among the Indians and Malays as a breath freshener, digestive aid, worm expellant, aphrodisiac, and to maintain stamina [1]. It is claimed to possess effects such as euphoria, cooling, cold protection, a sense of well-being, palpitation, heightened alertness, and resistance to anger [1,2]. The seeds contain sugar (50-60%), lipid (12.84-15%), polyphenol (15%), alkaloid (0.2-0.5%), and dan carbohydrate (19.13%) [3]. The activities of A. catechu L. are antihelmintic, antifungal, antibacterial, anti-inflammatory, antioxidant, insecticidal, and laacidal [3-5]. The use of A. catechu L. extract as one of a potential herbal medicine was not only expected to be given orally but also as a topical medicine. Although a lot of literature showed many benefits of A. catechu L. extract in the community, however, no literature has shown the safety use of A. catechu L. extract on the skin.

Before the purpose of accessing A. catechu L. extract further as a medicinal ingredient and a potential external application for topical uses, it is necessary to assess the adverse effects that it could cause in mammals. Acute dermal toxicity is the adverse effects occurring within a short time of dermal application of a single dose of a test substance [6,7]. Assessment of a single dermal dose toxicity is an important part of any toxicology program for new consumer products to safeguard human beings against the possible adverse effects [8,9].
European Community guidelines (EEC directive of 1986; 86/609/EEC) and were approved by the Animal Ethics Committee of the Faculty of Medicine, Indonesia University.

Skin preparation for acute dermal toxicity study
The hair on the dorsal skin surface (About 6x8 cm²) of animals were carefully shaved 24 hrs using razor blade before application. Based on OECD guidelines 402, not ≤10% of the body surface area should be clear for the application of the test substance.

Experimental design for acute dermal toxicity
An intense dermal toxicity test was made in accordance with the guidelines 402 given by the OECD for the chemical testing [6]. Before the test, the rats were selected randomly and assigned to the treatment and control groups. 24 hrs before the test, fur was removed from the dorsal area of the trunk of the test animals by clipping. About 10% of the body surface area was cleared for the application of the test substance. The dorsum area was applied with the A. catechu L. aqueous extract, covered, and taped with a porous gauze dressing and non-irritating tape as shown in Fig. 1a. The positive control group received the dosage of 15,000 mg/kg of white soft paraffin 10% as a vehicle. This dose was applied locally only once on the 1st day of the study. The control group received the same dosage [6]. These doses were applied locally only once on the 1st day of the study.

Clinical observation
Rats from both experiments were clinically checked once on the 1st day of the study. Rats were monitored for the duration of 24 hrs, with special attention given to the first 6 hrs and once daily further for 14 days. The rats were weighed and visual observations for mortality. Changes in the weight of individual animals were calculated and compared with that control animals as stated in OECD guidelines 402 [6]. The time of death must be recorded as precisely as possible. Particular attention should be directed to observations of behavior patterns such as salivation, tremors, convulsions, diarrhea, lethargy, sleep, and coma. The changes in physical appearance, injury, pain, and signs of illness were conducted once daily during the period, as well as any changes in skin, eyes, and mucous membranes and also respiratory rate, circulatory, autonomic, central nervous system, and behavior patterns.

Pathological observation
On the last day of observation, all rats were decapitated and examined macroscopically. Anomalies in the internal organs were documented and examined microscopically. After these thorough examinations were done, the remaining rats and tissue were sacrificed and discarded.

Statistical analysis
Statistical analysis of LD50 value was performed using Thompson-Weil with 95% confidence interval. Comparisons were made between before and after treatment by the use of t-paired test. A p<0.05 or less (p<0.05) was considered as significant. All data were expressed as mean±standard error of the mean.

RESULTS

General sign and behavior of the rats
2 hrs after the application of 15,000 mg/kg body weight of the A. catechu L. aqueous extract dermally, the rats were becoming less active for 2 hrs. On the 2nd day, after removing the gauzes from the skin, the rats were becoming less active for 30 minutes. No poisonous signs were seen in any rats, which made due up to 14 days in the wake of applying of the concentrates once on the 1st day at single measurements level of 15,000 mg/kg body weight. There were no changes in skin and fur, eyes, mucous membrane, behavior patterns, salivation, lethargy, sleep, diarrhea, coma, and tremors. The observable examples of rats were watched initially 6 hrs and pursued by 24 hrs in the wake of applying the concentrates. The rats in both groups did not show any critical changes in conduct, skin impacts, breathing, disability in nourishment admission and water utilization, postural variations from the normal state and losing hair.

Weight loss was observed on the 2nd day, but the weight increased again in the following days. Afterward, weight gain was observed until the end of observation. No mortality was observed during 14 days after treatment with aqueous extract of A. catechu L. A significant difference on the weight gain, pre- and post-administration of A. catechu L. aqueous extract is shown in Table 1. There were no irritation signs on the skin. We found no erythema, eschar, edema, or any other reactions were observed in either intact or abraded site of all rats as shown in Fig 1b. There were no abnormal findings from a gross pathological examination of all internal organs at necropsy in the group. Based on these results, the oral LD50 of A. catechu L. aqueous extract is suggested to be >500 mg/kg body weight for female rats and this extract should, therefore, be labeling as unclassified nontoxic in the hazard category according to Globally Harmonized System (OECD-hazard). At the end of the observation period, all rats were decapitated. From the autopsies, no macroscopic anomalies were seen in the internal organs.

DISCUSSION
A desirable characteristic of any drug is that it has therapeutic effects at low dosages and has the least amount of undesirable secondary and toxic effects on individuals [11]. The results of this study, following the guidelines of the OECD, showed that the A. catechu L. extract which has been evaluated in this study was included in unclassified nontoxic in rats at a dosage of 15,000 mg/kg body weight. A. catechu L. constituents are known through several experiments to have beneficial effects on skin, suggesting the possible use in cosmetics industries [12,13]. Hence, this study might explain the importance of investigating the safety use of A. catechu L. extract on the skin.

Organ weight likewise is a vital record of physiological and obsessive status in creatures. The relative organ weight is major to finding whether the organ was presented to the damage or not [14]. A decreased body weights on the 2nd day were thought to be caused by the stress given by tapping for the treatment since it happened in both control and treatment. The body weight gain of experimental animals and control group is an indicator of the degree of wellness and health of the rats. This finding indicates that high oral dosage of the A. catechu L. extract has an effect on the general well-being of the treated rats.

Skin is a barrier that keeps body water in and microorganisms and noxious chemicals out. Topical drugs, the mainstay of treatment in dermatology, are applied in the hope and expectation that any percutaneous absorption will be minimal and that systemic side effects will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15].

Skin is a barrier that keeps body water in and microorganisms and noxious chemicals out. Topical drugs, the mainstay of treatment in dermatology, are applied in the hope and expectation that any percutaneous absorption will be minimal and that systemic side effects will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15].

Skin is a barrier that keeps body water in and microorganisms and noxious chemicals out. Topical drugs, the mainstay of treatment in dermatology, are applied in the hope and expectation that any percutaneous absorption will be minimal and that systemic side effects will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15].

Skin is a barrier that keeps body water in and microorganisms and noxious chemicals out. Topical drugs, the mainstay of treatment in dermatology, are applied in the hope and expectation that any percutaneous absorption will be minimal and that systemic side effects will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15]. The superficial layers of the epidermis, the stratum corneum, provide almost all the skin’s barrier properties. Most drug absorption is transcellular; it is unlikely that noticeable absorption will not occur [15].
Table 1: Effect of aqueous extract of *A. catechu* L. on sprague dawley rats body weight at 15,000 mg/kg body weight

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Body weight</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before treatment M1±SD1</td>
<td>After treatment M2±SD2</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Soft paraffin 10%</td>
<td>172.80 ± 6.87</td>
<td>182.40 ± 7.40</td>
</tr>
<tr>
<td>Dermal</td>
<td>15,000 mg/kg BW</td>
<td>174.00 ± 5.65</td>
<td>182.80 ± 6.87</td>
</tr>
</tbody>
</table>

a Significant, M1, SD1, M2, and SD2 are mean weight and standard deviation respectively for 1 (before treatment) and for 2 (after treatment), p<0.05: Statistically significant. SD: Standard deviation, BW: Body weight, *A. catechu* L.: *Areca catechu* Linn.

![Fig. 1: (a) Clipped area of the skin was covered with non-irritating tape. (b) Clipped area of the skin after the removal *Areca catechu* Linn. aqueous extract application (dosage 15,000 mg/kg bw)](image)

Clinical conditions like Cancer, osteoporosis, neurodegenerative, cardiovascular diseases, diabetes mellitus. The *A. catechu* L. nut contains a number of chemical components such as phenolic compounds (flavonoid, safrole, tannins, gallic acid, and catechin). It also contains alkaloids (arecoline, arecainidine, guvacine, and guvacoline) [4]. Flavonoids are polyphenolic compounds that are ubiquitous in nature and are categorized according to chemical structures into flavonols, flavones, flavonoids, isoflavonoids, catechins, anthocyanidins, and chalcones [1,16]. The absorption of flavonoid into the human skin has not been tested. However, from a single topical dose of catechin in green tea, maximal concentrations of 1.366 µg/mL and 411 µg/mL were measured in mouse epidermis and dermis, respectively [17]. The mechanisms of flavonoids are through the scavenging or chelating process. Hamsar et al. showed that the *A. catechu* L. extract has the proton-donating ability and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidant [1]. This promise has led to an explosion in nutrient containing products which are marketed for skin health improvement. The *A. catechu* L. extract, which is nontoxic, both cosmetic and consumable, can be considered as antioxidant nutrients for topical use.

CONCLUSION

Our results had demonstrated that the *A. catechu* L. aqueous extract possesses nontoxicity effects as indicated in Sprague-Dawley rats. No deaths or indications of poison presence were seen in rats that received the extract up to a dermal acute limit dose of 15,000 mg/kg body weight. However, since the *A. catechu* L. is the main constituent responsible for oral squamous cell carcinoma, therefore, *A. catechu* L deserves more attention by the scientific community to explore its full range of benefits for clinical applications.

REFERENCES

16. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids and are catharines (arecoline, arecaidine, guvacine, and guvacoline) [4]. Flavonoids are polyphenolic compounds that are ubiquitous in nature and are categorized according to chemical structures into flavonols, flavones, flavonoids, isoflavonoids, catechins, anthocyanidins, and chalcones [1,16]. The absorption of flavonoid into the human skin has not been tested. However, from a single topical dose of catechin in green tea, maximal concentrations of 1.366 µg/mL and 411 µg/mL were measured in mouse epidermis and dermis, respectively [17]. The mechanisms of flavonoids are through the scavenging or chelating process. Hamsar et al. showed that the *A. catechu* L. extract has the proton-donating ability and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidant [1]. This promise has led to an explosion in nutrient containing products which are marketed for skin health improvement. The *A. catechu* L. extract, which is nontoxic, both cosmetic and consumable, can be considered as antioxidant nutrients for topical use.

CONCLUSION

Our results had demonstrated that the *A. catechu* L. aqueous extract possesses nontoxicity effects as indicated in Sprague-Dawley rats. No deaths or indications of poison presence were seen in rats that received the extract up to a dermal acute limit dose of 15,000 mg/kg body weight. However, since the *A. catechu* L. is the main constituent responsible for oral squamous cell carcinoma, therefore, *A. catechu* L deserves more attention by the scientific community to explore its full range of benefits for clinical applications.