Modeling the adsorption of pure gases on coals with the SLD model

School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA

Received 13 November 2002; accepted 5 May 2003; Available online 3 September 2003.

Abstract

The simplified local density/Peng–Robinson model (SLD-PR) was modified to improve its predictive capability when dealing with near-critical and supercritical adsorption systems of the type encountered in coalbed methane recovery and CO₂ sequestration. The goal was to develop efficient equation-of-state (EOS) computational frameworks for representing adsorption behavior, as well as to improve our understanding of the phenomenon. The ability of the modified SLD-PR to correlate accurately data for supercritical adsorption systems is demonstrated using adsorption measurements on activated carbon, Illinois #6 coal, Fruitland coal, and Lower Basin Fruitland coal. The results indicate that the modified SLD-PR model, which incorporates a modified repulsive parameter “b” for the PR EOS, is capable of modeling the adsorption of pure methane, nitrogen, and CO₂ at coalbed conditions. Inclusion of a slit geometry in the adsorbent matrix yields results superior to our previous two-dimensional EOS models for the adsorbates considered. The results also indicate that accounting for the adsorption surface structure within the SLD-EOS framework is effective in improving modeling capability for high-pressure adsorption phenomena. An explanation is offered as to why the adsorbed-phase densities are close to the EOS reciprocal co-volumes. Further, the model (a) generates direct estimates for the adsorbed-phase densities (which facilitate reliable prediction of absolute gas adsorption) and (b) readily describes the observed maximum in Gibbs-adsorption isotherms of CO₂ at the temperatures and pressures encountered in coalbeds.

Author Keywords: A. Coal; Activated carbon; B. High pressure; C. Adsorption properties; D. Gas storage

\[A \]
Surface area

\[a \]
Peng–Robinson attractive parameter

\[a_{\text{ads}} \]
Local Peng–Robinson attractive parameter for adsorbed phase
AAD
Average absolute deviation

\(b \)
Peng–Robinson covolume

\(b_{ads} \)
Modified Peng–Robinson covolume for adsorbed phase

\(f \)
Fugacity

\(i \)
Dummy index

\(k \)
Boltzmann constant

\(L \)
Slit width; defined as the normal distance between the carbon planes

\(N \)
Number of points in regression

\(N_A \)
Avogadro’s number

\(n \)
Amount in moles

\(n_{Gibbs} \)
The Gibbs excess adsorption

\(P \)
Pressure

\(R \)
Universal gas constant

\(T \)
Temperature

\(V_a \)
Adsorbed-phase volume

\(V_{void} \)
Void volume (system volume minus adsorbent volume determined by helium)

\(v \)
Specific volume of fluid

WAAD
Weighted average absolute deviation

WRMS
Weighted root mean square deviation

\(z \)
Normal position between carbon planes; zero at one plane

\(z' \)
Dummy position variable: \(z' = z + \sigma_{ff}/2 \)

\(Z \)
Compressibility factor

Subscripts
a Adsorbed-phase property
b Bulk property
c Critical condition
ff Fluid–fluid interaction
fs Fluid–solid interaction
ss Solid–solid interaction

Greeks

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Temperature dependent function for Peng–Robinson EOS</td>
</tr>
<tr>
<td>ξ_{fs}</td>
<td>Fluid–solid interaction parameter</td>
</tr>
<tr>
<td>A_b</td>
<td>Modification parameter to Peng–Robinson covolume</td>
</tr>
<tr>
<td>λ</td>
<td>Defined by Eq. (19)</td>
</tr>
<tr>
<td>μ</td>
<td>Chemical potential</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ</td>
<td>Particle diameter</td>
</tr>
<tr>
<td>σ_{exp}</td>
<td>Expected experimental uncertainty</td>
</tr>
<tr>
<td>ψ</td>
<td>Fluid–solid potential function</td>
</tr>
</tbody>
</table>

Article Outline

- Nomenclature
- 1. Introduction
- 2. SLD slit theory
- 3. Background on Gibbs excess and absolute adsorption
- 4. Database employed in this study
 - 4.1. Activated carbon
 - 4.2. Fruitland coal
 - 4.3. Illinois #6 coal
 - 4.4. Lower Basin fruitland coal
- 5. Data reduction procedure
- 6. Modeling results and discussion
6.1. Original SLD predictions
6.2. Modified SLD predictions
6.3. Modeling dry activated carbon adsorption
6.4. Modeling wet coal adsorption
6.5. Absolute adsorption calculations
7. Conclusions
Acknowledgements
References

Fig. 1. SLD slit geometry.