NASKAH LENGGKAP
PENDIDIKAN KEDOKTERAN BERKELANJUTAN
ILMU KESEHATAN ANAK KE-XLII

FAKULTAS KEDOKTERAN
UNIVERSITAS INDONESIA

DARI KEHIDUPAN INTRAUTERIN
SAMPALI TRANSPLANTASI ORGAN
Aktualisasi Gastroenterologi-Hepatologi dan Gizi

Jakarta, 22-23 Februari 1999
<table>
<thead>
<tr>
<th>No.</th>
<th>KETERANGAN</th>
<th>TANGGAL</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXVI</td>
<td>RADIOLOGI</td>
<td>11-12 Sep 1992</td>
<td>Pencitraan Traktus Urinarius pada Anak</td>
</tr>
<tr>
<td>XXVII</td>
<td>HEPATOLOGI</td>
<td>6-7 Nop 1992</td>
<td>Hepatologi Anak Masa Kini</td>
</tr>
<tr>
<td>XXVIII</td>
<td>ENDOKRINOGI</td>
<td>16-17 Feb 1993</td>
<td>Masalah Penyimpangan Pertumbuhan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Somatik pada Anak dan Remaja</td>
</tr>
<tr>
<td>XXIX</td>
<td>NEFROLOGI</td>
<td>24-25 Sept 1993</td>
<td>Penanggulangan Masalah Uronefrologi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pada Anak</td>
</tr>
<tr>
<td>XXX</td>
<td>GAWAT DARURAT</td>
<td>3-4 Des 1993</td>
<td>Pendekatan Farmakologi pada Pediatrik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gawat Darurat</td>
</tr>
<tr>
<td>XXXI</td>
<td>GASTROENTEROGI</td>
<td>3-4 Feb 1994</td>
<td>Optimalisasi Tatalaksana Gagal Tumbuh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gastrointestinal guna Meningkatkan Kualitas Sumber Daya Manusia</td>
</tr>
<tr>
<td>XXXII</td>
<td>KARDIOLOGI</td>
<td>1-2 Jul 1994</td>
<td>Pengenalan Dini dan Tatalaksana Penyakit Jantung Bawaan pada Neonatus</td>
</tr>
<tr>
<td>XXXII</td>
<td>PULMONOLOGI</td>
<td>2-3 Des 1994</td>
<td>Perkembangan dan Masalah Pulmonologi Anak Saat ini</td>
</tr>
<tr>
<td>XXXIV</td>
<td>NEUROLOGI</td>
<td>24-25 Mar 1995</td>
<td>Neurologi Anak dalam Praktek Sehari-hari</td>
</tr>
<tr>
<td>XXXV</td>
<td>GIZI</td>
<td>11-12 Agt 1995</td>
<td>Masalah Gizi Ganda dan Tumbuh Kembang Anak</td>
</tr>
<tr>
<td>XXXVI</td>
<td>ALERGI-IMUNOLOGI</td>
<td>10-11 Nop 1995</td>
<td>Strategi Pendekatan Klinis Berbagai Penyakit Alergi dan Reumatik pada Anak</td>
</tr>
<tr>
<td>XXXVI</td>
<td>TUMBUH KEMBANG PEDIATRI SOSIAL</td>
<td>21-23 Nop 1996</td>
<td>Deteksi dan Intervensi Dini Penyimpangan Tumbuh Kembang Anak dalam Upaya Optimalisasi Kualitas Sumber Daya Manusia</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>PERINATOLOGI</td>
<td>7-8 Apr 1997</td>
<td>Penanganan Mutakhir Bayi Prematur: memenuhi Kebutuhan Bayi Prematur untuk Menunjang Peningkatan Kualitas Sumber Daya Manusia</td>
</tr>
<tr>
<td>XXIX</td>
<td>INFEKSI DAN PEDIATRI TROPIK</td>
<td>25-26 Agt 1997</td>
<td>Strategi Pemilihan dan Penggunaan Vaksin serta Antibiotik dalam Upaya Antisipasi Era Perubahan Pola Penyakit</td>
</tr>
<tr>
<td>XL</td>
<td>RADIOLOGI</td>
<td>26-27 Nop 1997</td>
<td>Pencitraan: Penggunaannya untuk Menunjang Diagnosis Penyakit Saluran Napas dan Saraf pada Anak</td>
</tr>
<tr>
<td>XLI</td>
<td>HEMATOLOGI</td>
<td>24-25 Juni 1998</td>
<td>Darah dan Tumbuh Kembang: Aspek Transfusi</td>
</tr>
</tbody>
</table>

NASKAH LENGKAP
PENDIDIKAN KEDOKTERAN BERKELANJUTAN
ILMU KESEHATAN ANAK KE-XLII

FAKULTAS KEDOKTERAN
UNIVERSITAS INDONESIA

DARI KEHIDUPAN INTRAUTERIN
SAMPAI TRANSPLANTASI ORGAN
Aktualisasi Gastroenterologi-Hepatologi dan Gizi

PENYUNTING
Agus Firmansyah
Julfina Bisanto
Sri S. Nasar
Pramita G. Dwipurwanto
Hanifah Oswari

Jakarta, 22-23 Februari 1999
Hak cipta dilindungi undang-undang

Dilarang memperbanyak, mencetak dan menerbitkan sebagian atau seluruh buku ini dengan cara dan dalam bentuk apapun tanpa seijin penulis dan penerbit.

Diterbitkan pertama kali oleh:
Bagian Ilmu Kesehatan Anak FKUI
Jakarta, 1999

Percetakan buku ini dikelola oleh:
Balai Penerbit FKUI, Jakarta

SUSUNAN PANITIA

Pendidikan Kedokteran Berkelanjutan
Ilmu Kesehatan Anak ke-XLII
22-23 Februari 1999

**Pembina**
Dekan Fakultas Kedokteran UI
Direktur RSUPN Dr Cipto Mangunkusumo

**Penanggung Jawab**
Kepala Bagian Ilmu Kesehatan Anak FKUI-RSCM
Prof H Sofyan Ismael, dr, SpA(K)

**Panitia Pengarah**
Tim Pendidikan Kedokteran Berkelanjutan
Bagian Ilmu Kesehatan Anak FKUI-RSCM
Arwin A P Akib, dr, SpA(K)
Sri S. Nasar, dr, SpA(K)
Dr Sri Rezeki H Hadinegoro, dr, SpA(K)

**Panitia Penyelenggara**

- **Ketua**
  Prof Dr H Agus Firmansyah, dr, SpA(K)

- **Wakil Ketua**
  Sri S Nasar, dr, SpA(K)

- **Sekretaris**
  Purnamawati SP, MM (Paed), dr, SpA
  Aryono Hendarto, dr, SpA

- **Bendahara**
  Hj Aswitha Boediarto, dr, SpA(K)
  Badriul Hegar Syarif, dr, SpA

- **Seksi Ilmiah**
  Hj S Zuralda Zulkarnain, dr, SpA(K)
  Hj Julfina Bisanto, dr, SpA(K)
  Hj I Suharti Agusman, dr, SpA(K)
  Soepardi Soedibjo, MARS, dr, SpA(K)
  Pramita Gayatri, dr, SpA

**Anggota**

- Dyah Farida Amirani, dr, SpA
- Nuraini Irma Susanti, dr, SpA
- Adj Suranto, dr
- Hanifah Oswari, dr
- Niken Prita Yati, dr
- Sylvia Retnosari, dr
- Hermansyah Irwan, dr
- Fajar Subroto, dr
- Naomi Estherina, dr
- Piprim B Yansuarto, dr
- Mutri Andriastuti, dr
- Pulung M Silalahi, dr
- Arlin Algerina, dr
DAFTAR PENULIS
(Disusun menurut abjad)

Agus Firmansyah, Guru Besar, Ketua Program Studi Kedokteran (S-3) PPS-UI, Anggota Staf Subbagian Gastroenterologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Aryono Hendarto, Anggota Staf Subbagian Gizi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Aswitha D Boediarsor, Kepala Subbagian Gastroenterologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Badriul Hegar Syarif, Anggota Staf Subbagian Gastroenterologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Boerhan Hidajat, Kepala Subbagian Hepatologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Airlangga, Surabaya.

I. Suharti Agusman, Anggota Staf Subbagian Gizi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Julfina Bisanto, Anggota Staf Subbagian Hepatologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Laurentius Lesmana, Anggota Staf Subbagian Gastroenterologi, Bagian Ilmu Pernyakit Dalam Fakultas Kedokteran Universitas Indonesia, Jakarta.

Pramita G. Dwipurwantoro, Anggota Staf Subbagian Gastroenterologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.


Randall L Tressler, Abbott Laboratories, Illinois, USA.

Samsudin, Guru Besar, Anggota Staf Subbagian Gizi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Soepardi Soedibjo, Anggota Staf Direksi RSUP Nasional Dr Cipto Mangunkusumo, Anggota Subbagian Gizi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Sri Sudaryati Nasar, Anggota Staf Subbagian Gizi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.

Zuraida Zulkarnain, Kepala Subbagian Hepatologi, Bagian Ilmu Kesehatan Anak Fakultas Kedokteran Universitas Indonesia, Jakarta.
<table>
<thead>
<tr>
<th>No.</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Peranan nutrisi pada awal kehidupan</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Long-chain polyunsaturated fatty acids and brain development</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Metabolisme asam empedu dan kolestasis pada bayi</td>
<td>25</td>
</tr>
<tr>
<td>4.</td>
<td>Peran mikronutrien dalam regenerasi mukosa usus</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>Metabolisme nutrien pada kelainan hati</td>
<td>47</td>
</tr>
<tr>
<td>6.</td>
<td>Dietary nucleotides and their role in immune function</td>
<td>53</td>
</tr>
<tr>
<td>7.</td>
<td>Pendekatan diagnosis perdarahan saluran cerna atas</td>
<td>63</td>
</tr>
<tr>
<td>8.</td>
<td>Tatalaksana perdarahan cerna pada hipertensi porta</td>
<td>73</td>
</tr>
<tr>
<td>9.</td>
<td>Dukungan nutrisi pada penyakit hati kronik</td>
<td>93</td>
</tr>
<tr>
<td>10.</td>
<td>Diare kronik non spesifik</td>
<td>101</td>
</tr>
<tr>
<td>11.</td>
<td>Tatalaksana hepatitis kronik B dan C</td>
<td>107</td>
</tr>
<tr>
<td>12.</td>
<td>Retardasi pertumbuhan intrauterin dan gagal tumbuh</td>
<td>113</td>
</tr>
<tr>
<td>13.</td>
<td>Nutrisi enteral pada anak</td>
<td>125</td>
</tr>
<tr>
<td>14.</td>
<td>Komplikasi hepatobilier nutrisi parenteral</td>
<td>141</td>
</tr>
<tr>
<td>15.</td>
<td>Pengaruh nutrisi parenteral pada saluran cerna</td>
<td>149</td>
</tr>
<tr>
<td>16.</td>
<td>Transplantasi usus halus pada anak</td>
<td>157</td>
</tr>
<tr>
<td>17.</td>
<td>Transplantasi hati pada anak</td>
<td>161</td>
</tr>
<tr>
<td>18.</td>
<td>Dasar ilmiah fortifikasi formula bayi</td>
<td>185</td>
</tr>
<tr>
<td>19.</td>
<td>Perspektif gastroenterologi-hepatologi dan gizi di Indonesia</td>
<td>197</td>
</tr>
</tbody>
</table>
PENGARUH NUTRISI PARENTERAL PADA SALURAN CERNA

PENDAHULUAN

Nutrisi parenteral (NP) telah dikenal sebagai suatu teknik infus yang memberikan tubuh kebutuhan nutrien yang terdiri dari air, protein, lemak, karbohidrat, vitamin, trace metal, dan mineral. Pemberian NP adalah dengan cara infus larutan steril yang mengandung nutrien tersebut melalui sistem vena pada pasien yang tidak dapat menggunakan saluran cernanya untuk proses digesti dan absorpsi zat-zat nutrien yang dibutuhkan.

Nutrisi parenteral dapat total atau parsial. Nutrisi parenteral total (NPT) digunakan bila saluran cerna tidak dapat digunakan sama sekali karena malformasi usus bawaan, enterokolitis nekrotikans, distres pernapasan berat, atau kondisi lain yang mengganggu kemampuan saluran cerna untuk mengabsorpsi dan mencerna nutrien. Suplementasi NP digunakan bila saluran cerna dapat mencerna beberapa tetapi tidak seluruh nutrien untuk kebutuhan normal dan pertumbuhan yang diperlukan. Keadaan klinis yang membutuhkan dukungan NP dapat dilihat pada Tabel 1.

Nutrisi enteral mempunyai kelebihan dibandingkan nutrisi parenteral yaitu nutrien yang berada di saluran cerna akan menstimulasi hormon usus dan sekresi lainnya yang mempunyai efek trofik pada saluran cerna dan berperan pada regenerasi usus. Penggunaan NP untuk waktu yang lama akan menyebabkan komplikasi, selain membutuhkan biaya yang besar. Tidak adanya nutrien di dalam lumen
Tabel 1. Indikasi nutrisi parenteral pada anak³

<table>
<thead>
<tr>
<th>Neonatus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikasi mutlak</td>
<td></td>
</tr>
<tr>
<td>Kegagalan saluran cerna (sindrom usus pendek, gangguan pematangan fungsional, pseudo-obstruction)</td>
<td></td>
</tr>
<tr>
<td>Enterokolitis nekrotikans</td>
<td></td>
</tr>
<tr>
<td>Indikasi relatif</td>
<td></td>
</tr>
<tr>
<td>Penyakit membran hialin</td>
<td></td>
</tr>
<tr>
<td>Promosi pertumbuhan pada bayi kurang bulan</td>
<td></td>
</tr>
<tr>
<td>Pencegahan terhadap enterokolitis nekrotikans</td>
<td></td>
</tr>
<tr>
<td>Bayi dan anak</td>
<td></td>
</tr>
<tr>
<td>Kegagalan saluran cerna</td>
<td></td>
</tr>
<tr>
<td>Sindrom usus pendek</td>
<td></td>
</tr>
<tr>
<td>Diare kronik (<em>Protracted diarrhoea</em>)</td>
<td></td>
</tr>
<tr>
<td><em>Pseudo-obstruction</em> saluran cerna kronik</td>
<td></td>
</tr>
<tr>
<td>Pasca operasi abdomen atau kardiotorak</td>
<td></td>
</tr>
<tr>
<td>Terapi radiasi / sitotoksik</td>
<td></td>
</tr>
<tr>
<td>Eksklusi nutrien pada saluran cerna</td>
<td></td>
</tr>
<tr>
<td>Penyakit Crohn</td>
<td></td>
</tr>
<tr>
<td>Pankreatitis</td>
<td></td>
</tr>
<tr>
<td>Kegagalan organ</td>
<td></td>
</tr>
<tr>
<td>Gagal ginjal akut</td>
<td></td>
</tr>
<tr>
<td>Gagal hati akut</td>
<td></td>
</tr>
<tr>
<td>Hiperkatabolisme</td>
<td></td>
</tr>
<tr>
<td>Luka bakar luas</td>
<td></td>
</tr>
<tr>
<td>Trauma berat</td>
<td></td>
</tr>
</tbody>
</table>

saluran cerna pada saat diberikannya NPT akan mempengaruhi morfologi (struktur) dan fungsi integritas saluran cerna.³

Sebagai dasar untuk mengetahui efek ini maka perlu diketahui fisiologi saluran cerna normal selain mengenai nutrisi itu sendiri.

FISIOLOGI SALURAN CERNA NORMAL

A. Metabolisme saluran cerna

Saluran cerna merupakan massa sel tubuh yang paling aktif melakukan metabolisme, yaitu mengganti seluruh permukaan mukosa setiap 2 sampai 3 hari. Kelangsungan metabolisme sel mukosa tersebut dapat terpenuhi bila seluruh kebutuhan nutrisi saluran cerna berada dalam kondisi normal.⁴

Stimulus yang terpenting untuk pertumbuhan mukosa dan penggantian sel yaitu adanya nutrien di dalam saluran cerna. Bahan bakar utama bagi sel mukosa, terutama pada saat stres fisiologik adalah glutamin. Kolonosit juga memanfaatkan
asam lemak rantai pendek, yang dihasilkan oleh fermentasi serat makanan oleh bakteri, dan badan keton sebagai bahan utama.5

Pada saat stres metabolik akibat sepsis, trauma atau operasi besar maka proteolisis otot rangka secara bermakna meningkat dengan glutamin dan alanin merupakan asam amino utama yang dilepaskan. Walaupun glutamin bebas yang dilepaskan meningkat, kadar glutamin yang bersirkulasi menurun akibat meningkatnya ambilan glutamin dan metabolisme glutamin oleh saluran cerna. Glukosa kemudian dicadangkan sehingga dapat digunakan sebagai bahan bakar utama oleh organ vital lainnya. Metabolisme glutamin oleh saluran cerna menghasilkan alanin yang kemudian akan digunakan oleh hati untuk proses glukoneogenesis.4

B. Pengaturan peptida saluran cerna

Lebih dari 30 jenis peptida dijumpai di saluran cerna mamalia. Peptida tersebut berperan pada jaringan target seperti autokrin, parakrin, endokrin, atau neurotransmitter dan mempengaruhi setiap aspek fisiologik saluran cerna yaitu digesti, sekresi, absorpsi, motilitas dan pertumbuhan saluran cerna. Peptida yang terpenting adalah bombesin (gastrin-releasing peptide), yang merupakan pengatur penglepasan sebagian besar peptida saluran cerna, dan somatostatin meru-panakan pengatur inhibisi penglepasan peptida lainnya.4,6

Peptida yang termasuk dalam golongan gastrin-kolesistokinin akan dilepaskan sebagai respons akibat adanya makanan yang dikunyah untuk persiapan digesti. Gastrin yang dihasilkan oleh sel antral G sebagai respons terhadap distensi an-trum dan adanya protein di dalam lambung akan menstimulasi sekresi asam lambung oleh sel parietal.4,7 Kolesistokinin yang dilepaskan sebagai respons terhadap adanya asam amino dan asam lemak di dalam duodenum akan menstimulasi kontraksi kandung empedu dan sekresi pankreas.4

Peptida yang termasuk dalam golongan sekretin-glukagon secara umum berfungsi untuk meniadakan efek pengasaman lambung atau untuk memudahkan digesti makromolekul lebih lanjut. Golongan peptida ini yang penting secara klinis adalah sekretin, enteroglukagon, peptida vasoaktif usus, dan inhibitor polipeptida lambung. Sekretin dilepaskan sebagai respons terhadap pengasaman duodenum dan menyebabkan stimulasi sekresi bikarbonat pankreas dan inhibisi terhadap pengosongan lambung dan produksi asam lambung. Enteroglukagon juga menghambat produksi asam lambung. Peptida vasoaktif usus, suatu neurotransmitter yang terdapat sepanjang saluran cerna, akan menstimulasi peningkatkan sekresi ion dan air, peningkatan motilitas usus dan vasodilatasia splanknik.9-11

Peptida yang tergolong polipeptida pankreas secara umum berfungsi untuk memudahkan absorpsi nutrien intra lumen. Peptida yang memegang peranan penting dari golongan ini secara fisiologik termasuk neuropeptida Y, yang berfungsi mengatur aktivitas neuron intramural dan alliran darah lokal, sedangkan peptida YY yang dilepaskan sebagai respons terhadap adanya nutrien yang sampai di ileum terminal, menyebabkan meningkatnya waktu singgah dan inhibisi sekresi lambung dan pankreas.4
Sejumlah peptida lain yang ada, termasuk peptida calcitonin gene related, motilin, neurotensin, dan substansi P, yang penting sebagai pengatur motilitas saluran cerna. Gastrin, kolesistokin, enteroglukagon, dan faktor pertumbuhan epidermis kesemuanya mempunyai efek trofik pada saluran cerna, yang mempunyai implikasi penting untuk dukungan nutrisi saluran cerna dan pengaturan adaptasi usus sebagaimana perannya dalam fungsi barier usus.\textsuperscript{4,12,13}

C. Fungsi barier mukosa

Saluran cerna merupakan reservoir utama bakteri di dalam tubuh. Pada keadaan normal fungsi mukosa usus sebagai barier pertahanan utama yang mencegah bakteri dan endotoksin yang terdapat di dalam lumen saluran cerna untuk mencapai organ dan jaringan secara sistemik.\textsuperscript{9}

Kadar dan macamnya mikroorganisme meningkat secara dramatik dari proksimal sampai ke distal saluran cerna. Lambung secara normal mengandung sedikit bakteri karena lingkungannya yang asam dan adanya motilitas lambung. Makin ke distal saluran cerna jumlah bakteri akan meningkat, daerah proksimal usus halus mengandung sekitar $10^4$ bakteri per-gram jaringan dan ileum distal normal mengandung sampai $10^8$ bakteri per-gram. Kolon mengandung kadar bakteri terbanyak yaitu sekitar $10^8$ bakteri aerob dan $10^{11}$ bakteri anaerob per-gram. Bila barier mukosa saluran cerna terganggu pada tempat yang mengandung populasi bakteri yang tinggi, maka saluran cerna akan merupakan sumber endotosekemia dan sepsis.\textsuperscript{4}

Salah satu mekanisme pertahanan utama untuk mencegah translokasi bakteri adalah mikroflora normal usus. Dengan adanya mikroflora normal usus akan mencegah berlipatgandanya bakteri yang berpotensi patogen, yang disebut dengan "resistensi kolonisasi". Jelas bahwa bakteri anaerob obligat berperan pada resistensi kolonisasi. Barier saluran cerna ini akan hilang bila diberikan antibiotik berspektrum luas akibat bakteri anaerob obligat lebih sensitif terhadap supresi antibiotik dibandingkan flora usus yang normal lain. Supresi terhadap bakteri anaerob menyebabkan perlekatan langsung bakteri yang berpotensi patogen pada epitel usus yang merupakan predisposisi terjadinya bakteri tumbuhlampau dan infeksi invasif.\textsuperscript{4}

Fungsi barier saluran cerna juga melibatkan mekanisme pertahanan saluran cerna (Gambar 1). Peristaltik normal mencegah stasis bakteri yang berkepanjangan pada mukosa saluran cerna sehingga mengurangi kesempatan bakteri untuk dapat melakukan penetrasi terhadap lapisan mukus dan menempel pada permukaan epitel. Jika peristaltik terganggu sebagai akibat obstruksi usus atau ileus, akan menyebabkan stasis sehingga hal tersebut akan meningkatkan kesempatan pada bakteri untuk dapat melakukan penetrasi terhadap lapisan mukus dan menempel langsung pada permukaan epitel. Permukaan mukus saluran cerna tersebut sangat penting untuk mencegah menempelnya bakteri pada epitel saluran cerna, sehingga bila lapisan mukus tersebut dihilangkan maka akan terjadi peningkatan jumlah bakteri yang menempel langsung pada enterosit.\textsuperscript{4,14}

Sistem imun saluran cerna yang terdiri dari jaringan limfoid (plak Peyer, sel limfoid lamina propia dan limfosit intra epitel) berfungsi mengatur respons imun
lokal terhadap antigen yang larut maupun yang berupa partikel di dalam saluran cerna. Plak Peyer merupakan kumpulan jaringan limfoid yang tersebar sepanjang lamina propia usus halus, terutama di daerah ileum. Limfosit B berada di lapisan germinal plak Peyer, yang jika terpapar antigen saluran cerna akan bermigrasi ke daerah limfoid di dalam lamina propia dan berdiferasiasi menjadi sel plasma yang memproduksi sekretori IgA. Sekretori IgA berfungsi untuk mencegah invasi bakteri ke daerah mukosa dengan cara mengikat bakteri sehingga perlekatan ke permukaan epitel dapat dicegah. Sel limfoïd yang berada di lamina propia terdiri dari limfosit B dan T, sel plasma, serta sel mast, makrofag, dan eosinofil. Sebagian besar sel plasma yang berada di lamina propia memproduksi IgA, dan sisanya memproduksi IgM atau IgE. Limfosit T di lamina propia berperan sebagai sel sitotoksik. Limfosit intra epitel berada di permukaan mukosa saluran cerna dengan rasio sekitar satu limfosit untuk setiap 8 enterosit. Sebagian besar limfosit intra epitel adalah limfosit T sitotoksik.\(^{15}\)

Gambar 1. Proteksi mukosa saluran cerna normal terhadap invasi bakteri dengan bermacam cara (bakteri flora normal, sekresi lapisan mukus oleh epitel saluran cerna, dan hubungan sel yang erat (tight cell junction) (Dikutip dari Huddleston VB: Multisystem organ failure, pathophysiology approach. St Louis: Mosby, 1992)

Mekanisme pertahanan berupa anti endotoksin masih sangat sedikit diketahui. Empedu di dalam lumen saluran cerna berperan penting untuk mencegah terjadinya endotoksemia porta. Garam empedu berperan membatasi absorpsi endotoksin di lumen saluran cerna dengan cara mengikat endotoksin yang berada di saluran
cerna secara langsung dan membentuk kompleks yang menyerupai detergen yang sulit diserap. Fungsi sistem retikuloendotelial dianggap merupakan kesinambungan mekanisme pertahanan saluran cerna, yaitu dengan cara setiap bakteri atau endotoksin yang sampai di daerah sistem porta akan dibersihkan oleh sel Kupffer sehingga bakteremia ataupun endotoksemia sistemik dapat dicegah.⁴

**PERUBAHAN SALURAN CERNA AKIBAT NUTRISI PARENTERAL**

Nutrisi parenteral total merupakan sistem pendukung hidup yang tidak ternilai bagi neonatus, bayi, dan anak dengan berbagai derajat kegagalan sistem saluran cerna. Pada kasus sindrom usus pendek, terapi tersebut bermanfaat untuk tumbuh kembang pasien sampai tiba saatnya adaptasi usus telah adekuat untuk menerima makanan enteral secara penuh.¹⁶,¹⁷ Pada kasus radang usus, ketentuan terapi medik menggunakan NPT selama fase akut sangat berhubungan dengan gejala diare yang mereda sebagai akibat proses inflamasi membah. Bila NPT sangat diperlukan sebagai terapi pada kondisi tersebut, maka akan terjadi beberapa efek pada organ pencernaan.¹⁷

Hipoplasia usus dijumpai pada hewan coba yang mendapat NPT. Hal lain dilaporkan berkurangnya massa mukosa, kandungan DNA dan protein, serta mitosis dan indeks *labelling*. Hipoplasia yang terjadi selama periode NPT dengan balans nitrogen positif, menunjukkan bahwa kemungkinan respons mekanik dan fisiologik yang berhubungan dengan makanan yang terdapat di lumen saluran cerna mempunyai peranan penting untuk mempertahankan massa saluran cerna. Pengaruh efek stimulasi langsung berupa nutrien intra lumen dan sekresi saluran cerna, serta efek tidak langsung (sistemik) berupa hormon sistem saluran cerna pada hewan coba telah banyak dilaporkan.¹⁸⁻²⁰

Berdasarkan penelitian menggunakan hewan coba banyak diperoleh informasi yang dapat dilapliskasikan secara klinis, akan tetapi bukti langsung yang berupa efek hipoplastik dan akibat luas dari efek tersebut pada manusia sangat kurang. Rossi dkk¹⁷ membuktikan bahwa manusia ternyata lebih resisten terhadap perubahan usus menjadi hipoplastik yang terjadi akibat NPT.

Pada anak yang menderita penyakit radang usus dan mendapat NPT selama 1 bulan,¹⁷ ternyata hasilnya tidak berbeda dengan yang dilaporkan pada orang dewasa.²¹ Pada keadaan tersebut didapatkan kadar enzim disakaridase di *brush border* sedikit berkurang dan morfologi usus tidak berubah bila dilihat dengan mikroskop cahaya.¹²,²¹ Aktivitas proliferatif mukosa yang diukur berdasarkan total timgidin yang bergabung dengan DNA per biopsi total ternyata berkurang walaupun secara statistik tidak bermakna jika dihitung per-milligram jaringan.²¹

Sebaliknya pada pasien yang mendapat NPT untuk jangka waktu yang lama ternyata menunjukkan atrofi mukosa yang ringan dengan aktivitas proliferatif yang berkurang secara bermakna, terutama pada pasien yang menderita sindrom usus pendek.²¹ Hal ini berlawanan dengan yang ditemukan pada hewan coba yang mengalami aktivitas proliferatif yang meningkat pasca reseksi usus.

Pada manusia yang mendapat NPT akan terjadi perubahan morfologi dan fungsi saluran cerna, walaupun perubahan tersebut hanya sedikit bila dibandingkan dengan hewan coba. Struktur mukosa yang hilang sudah cukup dapat menyebabkan peningkatan permeabilitas usus. Terjadinya sepsis pada penelitian ini kemungkinan berhubungan dengan adaptasi saluran cerna bukan akibat degradasi. Tampaknya pemberian glutamin intravena dapat mengurangi perubahan morfologik secara bermakna walaupun efek ini minor. Hal ini kemungkinan karena glutamin hanya diperlukan pada kondisi pasien "katabolik''.24

Penelitian menggunakan hewan coba membuktikan bahwa produksi imunoglobulin saluran cerna berkurang bila nutrisi intra lumen dihentikan dan nutrisi semata-mata berasal dari NPT. Pada manusia hal ini tidak terbukti, yaitu NPT tidak berhubungan dengan disfungsi imun saluran cerna. Nutrisi parenteral total menyebabkan sedikit peningkatan kadar IgM secara bermakna. Etiologi dan makna klinis dari hal tersebut belum dapat dijelaskan.25

KESIMPULAN

Penelitian menggunakan hewan coba dapat menjelaskan fisiologi saluran cerna yang berhubungan dengan penghentian pemberian oral selama NPT. Beberapa penelitian menunjukkan efek yang hampir serupa yang terjadi pada manusia, walaupun efek pada manusia ternyata baru timbul pada pemberian NPT dengan jangka waktu yang lebih lama. Penemuan fisiologik yang bermakna masih harus ditentukan lebih lanjut, akan tetapi penemuan-menemuan yang telah ada mempunyai implikasi untuk penelitian selanjutnya mengenai penggunaan NPT sebagai dukungan nutrisi jangka panjang.

DAFTAR PUSTAKA


