INTERNATIONAL SCIENTIFIC MEETING (TINI IV)
& IKORGI NATIONAL CONGRESS XI

Revolutionary Paradigm for the Future Vision of Endodontics & Restorative Dentistry

November 3rd-5th, 2017
Shangri-La Hotel
May. Jend. Sungkono 120 Surabaya

BUKU PROSIDING
PROCEEDING
International Scientific Meeting (TINI IV)
& National Congress IKORGI XI

Theme:
Revolutionary Paradigm for the Future Vision of Endodontics and Restorative Dentistry

Surabaya, November 3rd – 5th, 2017

Steering Committee:
- M. Rulianto, drg., MS., SpKG(K)
- Prof. Dr. Latief Mooduto, drg., MS., Sp.KG(K)
- Karina Samadi, drg., MS., Sp.KG(K)

Organizing Committee:
- Ari Subiyanto, drg., MS., Sp.KG(K)
- Karina Samadi, drg., MS., Sp.KG(K)
- Dr. Dian Agusti W., drg., SpKG(K)
- Eric Priyo Prasetyo, drg., M.Kes., SpKG(K)
- Dr. Tarmu Yuantitu, drg., MS., Sp.KG(K)
- Dr. Ira Wijjastuti, drg., M.Kes., SpKG(K)
- Dr. Widja Saraswati, drg., M.Kes., Sp.KG
- Galih Sampurno, drg., M.Kes., SpKG(K)
- Devi Eka Yuniarti, drg., M.Kes., SpKG(K)

Editor:
- M. Rulianto, drg., MS., SpKG(K)

Reviewer:
- Prof. Dr. Latief Mooduto, drg., MS., SpKG(K)
- Dr. Ira Wijjastuti, drg., M.Kes., SpKG(K)
- Dr. Dian Agusti Wahyuningrum, drg., SpKG(K)
- Eric Priyo Prasetyo, drg., M.Kes., SpKG(K)

Published by:
PENGURUS PASAT IKATAN KONSERVASI GIGI INDONESIA (PP IKORGI)
Jl. Mayjend. Prof. Dr. Moestopo No. 47 Surabaya 60132
Telp. (031) 5030255; Fax. (031) 5030256

ISBN 978-602-19108-6-3
TABLE OF CONTENTS

OPENING SPEECHES .. iii

TABLE OF CONTENTS .. iv

C-SHAPED ROOT CANAL TREATMENT IN MANDIBULAR MOLAR
(CASE REPORT)
Adelia Mutia Indah, Juanita AG, Selviana Wulansari ... 1

HEMISECTION OF MANDIBULAR FIRST MOLAR WITH PERFORATED
FURCATION
Adeline Jovita Tambayong*,
Prof. Dr. Mardojo Rukmo, drg., M.Sc., Sp KG (K)** ... 7

DIRECT COMPOSITE RESIN RESTORATION REINFORCED WITH
SHORT FIBER POST ENDODONTIC TREATMENT ON NECROSIS
MOLAR MANDIBULAR: A CASE REPORT
Amarendra Anindita*, K. Tri Endro Untara** ... 13

THE ROLE OF GLASS IONOMER CEMENT PLACEMENT AS A BARRIER
IN INTERNAL BLEACHING POST ENDODONTICALLY TREATED
MAXILLARY ANTERIOR: A CASE REPORT
Amelia Tjandra1, Agus Subiwajudi2 .. 19

INTRACORONAL BLEACHING ON TOOTH DISCOLORED BY TRIPLE
ANTIBIOTIC PASTE
Andari Putrianti1, Munyati Usman2 ... 25

RETREATMENT AND ROOT CANAL TREATMENT WITH ALL
PORCELAIN CROWN RESTORATION AND FIBER POST ON FOUR
ANTERIOR TEETH FRACTURE POST TRAUMA
Arifita Putri Fardani*, Elma Mulyawati** .. 31
COMPOSITE RESIN RESTORATION WITH FABRICATED FIBER-REINFORCED POST COMPOSITE ON NECROSE PULP OF MAXILLARY CENTRAL INCISOR POST ROOT CANAL TREATMENT
Betagia Swundha Wisesa* Ema Mulyawati** ... 41

RETROGRADE FILLING USING MINERAL TRIOXIDE AGGREGATE (MTA) AND BONE CRAFT (REGENERATIVE MATERIAL) PLACEMENT AFTER APICOECTOMY AS MANAGEMENT OF NON-SURGERY ENDOODONTIC FAILURE IN RIGHT MAXILARY CENTRAL INCISOR WITH PERIAPICAL GRANULOMA
Budiono Wijaya1 and Priadi Santosa2 ... 49

LITERATURE REVIEW
EFFECTIVENESS DIODE LASER AS ADDITIONAL DEVICE ON ROOT CANAL DISINFECION
Chitra Iselini1, Ratna Meidyawati2 .. 53

APICAL RESECTION: AN ALTERNATIVE MANAGEMENT OF LARGE PERIAPICAL CYST
Clarisa Fredline*, Ari Subiyanto** .. 65

MANAGEMENT OF ESTHETIC COMPLEX CASE IN ANTERIOR MAXILLARY TEETH THROUGH A COMPREHENSIVE APPROACH: A CASE REPORT
Cyrilla Prima A. M.1, Tunjung Nugraheni2 .. 73

MANAGEMENT OF APENIFICATION WITH MINERAL TRIOXIDE AGGREGATE APICAL PLUG ON PERMANENT MAXILLARY CENTRAL INCISORS: A CASE REPORT
Dari Rudyanto*, Dian A Wahjamingrum.** ... 81

MANAGEMENT OF FIVE ROOT CANALS IN MANDIBULAR FIRST MOLAR TOOTH: A CASE REPORT
Daryono,1 Beraad O. Iskandar,2 Wieni Widjastuti2 .. 89

NON-SURGICAL MANAGEMENT OF A LARGE PERIAPICAL LESION USING A SIMPLE ASPIRATION TECHNIQUE: A CASE REPORT
Daseli* Adhita Dharsana** ... 95
ROOT CANAL TREATMENT AND RESTORATION USING METAL PREFABRICATED TAPERED SERRATED POSTS WITH PORCELAIN FUSED TO METAL FULL CROWN IN FAILURE ENDODONTIC TREATMENT
Dewi Darmawati*, Diatri Nari Ratih** ... 103

APICAL RESECTION FOR PERIAPIICAL CYST TREATMENT CASE
Diana Soesilo .. 111

THE AESTHETIC REHABILITATION OF THE MAXILLARY INCISORS AND SUPRAPOSITION OF THE MANDBULAR CENTRAL INCISORS
Andini Irimawati Praetyo1, Sri Kunarti2 ... 117

CROWN LENGTHENING AND ALL PORCELAIN JACKET CROWNS WITH THE PREFABRICATED FIBER POST REINFORCEMENT ON THE 12TH TOOTH OF THE CLASS IV ELLIS FRACTURE.
Istikomah Darmawati*, Yulita Kristanti** .. 129

EFFECT OF ADDITION OF WHITE SHRIMP SHELL’S NANO CHITOSAN (LITOPENAEUSVANNAMF) IN CALCIUM HYDROXIDE AGAINST FIBROBLAST CELL CYTOTOXICITY (MTT Test)
1Dewa Made Wedagama2, Yusfitra.. 139

INTERNAL BLEACHING AND RESTORATION USING PREFABRICATED FIBER POST COMBINED WITH POLYETHYLENE FIBER AND DIRECT COMPOSITE RESIN IN ENDODONTICALLY TREATED TOOTH WITH FLARED CANAL.
Yohannes Dian Indrajati*, Tunjung Nugraheni** .. 145

APICAL SURGERY FOR PERIAPIICAL LESION MANAGEMENT CAUSED BY TRAUMATIC INJURY
Ni Luh Putu Sri Widani1, Firmansyah2 dan Wignyo Hadriyanto3 157
PH CHANGES OF ROOTS FOLLOWING ROOT CANAL DRESSING WITH HYDROGEL, CHITOSAN, CONVENTIONAL CALCIUM HYDROXIDE AND A COMMERCIAL CALCIUM HYDROXIDE PASTE: LITERATURE REVIEW 167

MULTIPLE DIASTEMA CLOSURE USING DIRECT VENEER RESTORATION COMBINED WITH EXTERNAL BLEACHING: A CASE REPORT ... 179

HEALING OF LARGE PERIAPICAL LESION WITH NON SURGICAL ENDODONTIC TREATMENT APPROACH: A CASE REPORT .. 185

REPLANTATION AND REPOSITION OF IATROGENIC AVULSION IMPACTED CANINE DUE TO NEGLIGENCE EXTRACTION: A CASE REPORT ... 193

APEXIFICATION USING MINERAL TRIoxide AGGREGATE AND COMPOSITE CROWN RESTORATION WITH FIBER REINFORCED CUSTOMIZED DOWEL CORE ON LEFT CENTRAL INCISOR MAXILLA .. 203

DILACERATED ROOT CANAL TREATMENT USING HYFLEX CM ROTARY FILES ... 207

MANAGEMENT OF C-SHAPE CANALS: TWO CASE REPORT .. 213

MANAGEMENT OF ANTERIOR DENTAL TRAUMA (TWO YEARS AFTER TRAUMA): A CASE REPORT 219
ENDODONTIC TREATMENT OF MAXILLARY LATERAL INCISOR WITH SUSPECTED RADICULAR CYST AND EXTERNAL APICAL ROOT RESORPTION: A CASE REPORT
Hasti Dwi Setiati1, Endang Suprastiw2 .. 223

MANAGEMENT OF NARROW CANAL ON MAXILLARY RIGHT LATERAL INCISIVUS (A CASE REPORT)
Hendro Santoso Mahmas1, Tia Sawartini3, Anastasia E. Prabasti3 231

ENDODONTIC RETREATMENT OF MAXILLARY FIRST MOLAR WITH ADDITIONAL OF MB 2 ROOT CANAL
A CASE REPORT
Hermika Harperiana1, Juania Agunawan1, Anastasia E Prabasti3 237

RETROGRADE FILLING USING MINERAL TRIOXIDE AGGREGATE (MTA) AFTER APICOECTOMY IN ENDODONTIC FAILURE CASE WITH OVERFILLED OBTRURATION, ACRYLIC CROWN, AND CUSTOM DOWEL POST-CORE
Ida Fitri Setiyowati1, R. Tri Endra Ustara** .. 243

THE SHRINKAGE DIFFERENCES OF ROOT CANAL TREATEMENT USING BALANCED FORCE AND STEP BACK PREPARATION TECHNIQUE WITH THERMOPLASTICIZED FILLING TECHNIQUE (SCANNING ELECTRON MICROSCOPY)
I Gusti Agung Ayu Hartini, Gede Bintang Anugrah .. 251

ANTIBACTERIAL EFFICACY OF CHITOSAN AS ROOT CANAL IRRIGANTS IN ENDODONTICS ON ENTEROCOCCUS FAECALIS (LITERATUR REVIEW)
Inelda Damawi * Trimurni Abidin** ... 259

EFFECT OF CURRENT LED LIGHT CURING ON POLYMERIZATION OF DIFFERENT PHOTOSTARTER OF COMPOSITE RESIN: A LITERATURE REVIEW
Juliana Siregar * Dennis** Rasinta Tarigan*** .. 269

APICAL CURRETTAGE AND PREFABRICATED FIBER POST WITH RESTORATION OF CLASS IV COMPOSITE RESIN
Kiki Maharani Fadhilah*, Fribadi Santosa** ... 281
ROOT CANAL TREATMENT OF SUBGINGIVAL CARIES ON DISTAL MANDIBULAR SECOND MOLAR DUE TO WISDOM TOOTH IMPACTION: A CASE REPORT
Kisnya Wicaksana1, Bernard O. Iskandar2, Arndy Subrata3

HEMISECTION OF MANDIBULAR FIRST MOLAR
Leedwin Kalyana Alison*, Wigyno Hadriyanto**

INTRACORONAL BLEACHING FOLLOWED BY DIRECT COMPOSITE RESTORATION AS A MANAGEMENT OF DISCOLORED ANTERIOR TEETH: A CASE REPORT
Lidy Octavia1, Sri Subekti Wimonoto2, Elline3

ANTIBACTERIAL POTENTIAL OF N-ACETYLCYSTEINE AS AN ENDODONTIC IRRIGANT AGAINST ENTEROCOCCUS FAECALIS BIOFILM
Rizki Rodalaksani1, Kamizar2, Nilakesuma Djauharie3

BLEACHING TECHNIQUE FOR DISCOLORATION IN POST ENDODONTIC TREATMENT TOOTH: A CASE REPORT
Makkunrai Eka Kramatawati Elizabeth1, Kartina Samadi, D.D.S., MS, SpK(K)2

THE USE OF PREFABRICATED FIBER POST COMBINED WITH POLYETHYLENE RIBBON AS CUSTOMIZED POST IN WIDE ROOT CANAL FOLLOWING ENDODONTIC RETREATMENT: A CASE REPORT
Marsinda L.M.T1, Dennis2, Tirimurni Abidin**

RESTORATION OF ENDODONTICALLY TREATED TEETH WITH SEVERE LOSS OF TOOTH STRUCTURE - CASE REPORT
Mike Wijay1, Dennis2, Tirimurni Abidin**

TREATMENT OF DISCOLORATION ON THE MAXILLARY CENTRAL INCISOR WITH WALKING BLEACH TECHNIQUE (A CASE REPORT)
Muh. Yuni1, Rahmi Alfa Fatih4
ROOT CANAL TREATMENT OF LOWER RIGHT MOLAR IN CHRONIC TERMINAL RENAL FAILURE.
Muhammad Zaul Haq1, Anggraini Margono2 ... 355

RETRIEVAL OF SEPARATED INSTRUMENT FROM THE CURVED CANAL USING ULTRASONIC TIP INSTRUMENT: A CASE REPORT
Natalis Iskandar Setiawan1, Bernard O Iskandar2, Aryadi Subrata2 363

RETAINING EXTENSIVE CAVITY HYPERPLASTIC PULPITIS MANDIBULAR FIRST MOLAR WITH PULPECTOMY AND ENDOCROWN: A CASE REPORT
Paulus Alexander1, Iko Fihryanto1, Tsufiq Aririhowo3 .. 371

COMPREHENSIVE TREATMENT OF MAXILLARY ANTERIOR TEETH: A CASE REPORT
Priyke Lasari1, Tien Siswanti2, Wienda Widusari2 .. 375

DISCOLORATION TREATMENT WITH IN OFFICE BLEACHING: A CASE REPORT
Rike Kaptian1 .. 381

POTENCY OF CHITOSAN NANO CELAS DESENSITIZING AGENTS
Rina Oktavia* Trimuni Abidin** .. 389

CONVENTIONAL ENDODONTIC RETREATMENT OF MANDIBULAR FIRST MOLAR WITH UNDERFILLING
Riza Fereunati1, Kamizar** ... 399

DIRECT VENEER COMPOSITE FOR DIASTEMA AND PEG SHAPED ON ANTERIOR MAXILLARY TEETH (CASE REPORT)
Rozita K. Hakim1, Juainita A Ganiawan2, Selviana Wulanarti2 .. 409

ROOT CANAL RETREATMENT OF TRUE COMBINED LESION IN MANDIBULAR RIGHT CANINE
Silviana Swastiningtyas1, Anggraini Margono2 .. 415
ENDOCROWN AS A FINAL RESTORATION FOR ENDODONTICALLY TREATED TEETH WITH CHRONIC APICAL ABSCESS—A CASE REPORT
Stephani Marthios*, Sri Subekti Wirantos*, Ellinez* ... 423

DIFFERENT FERRULE DESIGNS ON FRACTURE RESISTANCE IN MAXILLARY ANTERIOR TOOTH: LITERATURE REVIEW
Tri Sari Desi Purba*, Denisw** Rasinata Tarigan** ... 429

ROOT CANAL RETREATMENT OF A RIGHT MAXILLARY LATERAL INCISOR TEETH CAUSED OF INADEQUATE ROOT CANAL TREATMENT
Wahiyana Aldi*, Nilakustumb Djuabari** ... 441

A COMPARATIVE EVALUATION OF FRACTURE RESISTANCE OF ENDODONTICALLY TREATED TEETH ORTURATED WITH AH PLUS AND GUTTAFLOW SEALERS USING DIFFERENT OBTURATION TECHNIQUES: LITERATURE REVIEW
Yenny Agustinus Marpaung*, Triyuni Abidin**, Indra N*** ... 451

CASE REPORT: SURGICAL ENDODONTIC TREATMENT OF MAXILLARY CENTRAL INCISORS WITH LARGE PERIAPICAL LESION
Ekthyanto Cahyadi K.Y.*, Ira Widjastuti** ... 461

MANAGEMENT OF TRAUMATIC TOOTH WITH OPEN APICAL AND DISCOLORATION: A CASE REPORT
Farsida Widhi Astuti*, Edhie Ari Prasetyo** ... 467

ROOT CANAL TREATMENT IN MAXILLARY SECOND PREMOLAR WITH CORONAL FLARING SHAPED OF THE TWO-THIRD ROOT CANAL
Dwi Aniawaty*, Dewa Ayun Nyoman Putri Astiningati** ... 475

APEXIFICATION WITH MINERAL TRIOXIDE AGGREGATE (MTA) AND INTERNAL BLEACHING ON RIGHT UPPER CENTRAL INCISIVUS TOOTH WITH DISCOLORATION
Elisabeth Reni* dan Prihandi Santoso** ... 483
MESIAL ROOT HEMISECTION AND RESTORATION AS A TREATMENT OPTION OF MANDBULAR FIRST MOLAR: A CASE REPORT
Dina Dewi Artini, drg.1, Prof. Dr. Rusan Efendi, drg. MS., Sp.KG(K)2 463

ROOT RESECTION OF MAXILLARY FIRST MOLAR: A CASE REPORT
Dina Ristyawati1, M. Mudjiono3 .. 501

THE POTENTIAL ROLE OF PROPOLIS ON DENTIN REGENERATION AND REPAIR DURING DIRECT PULP CAPPING TREATMENT
Ardo Sabiz4, Juni Jefri Nagroho3 509

AESTHETIC CORRECTION OF A MICRODONTIC TOOTH USING DIRECT COMPOSITE RESIN: A CASE REPORT
Maulia Rahmah1, Cecilia G Lizardhi 2 ... 521

ESTHETIC REHABILITATION OF SEVERELY DISCOLORED ANTERIOR TOOTH WITH INTERNAL BLEACHING FOLLOWED BY DIRECT COMPOSITE LAMINATE VENEER
Gustianto Wahyu Wibowo1 and R. Tri Endra Untari2 ... 527

MTA APPLICATION ON APICAL PERFORATION WITH FIBER POST AND COMPOSITE RESIN RESTORATION.
Ivan Salsoro1, Irwidiastuti1 .. 541

AESTHETIC ENHANCEMENT WITH A COMBINATION OF EXTRACORONAL BLEACHING AND VENEER PROCEDURE
Ketut Sri Widyawati1, Ema Mulyawati2 .. 547

SUCCESSFUL USE OF BIODENTIN FOR A VITAL PULP THERAPY ON A LOWER MOLAR DEEP CAVITY
Mohammad Kennedy* Tinarmi Abidin** ... 555

TREATMENT OF ENDO PERIO LESION WITH TRAUMATIC OCCLUSION ON RIGHT LATERAL INSICIVUS MAXILLARY
Norma Avanti 1, Nila Kesuma Djauhari, drg. MPH, Sp.KG(K)2 .. 561
ENDODONTIC RETREATMENT OF MAXILLARY SECOND PREMOLAR WITH ROOT CANAL CONFIGURATION VERTUCCI CLASS II
Mettasari Paspa Wardoyo¹, Dewa Ayu Nyoman Putri Artiningsthi² 569

ROOT CANAL TREATMENT OF UPPER FIRST MOLAR WITH TWO-THIRD APICAL OBLITERATION
Celine Marais³, Manyati Usman³ .. 579

MANAGEMENT ON APICAL THIRD FRACTURE OF CENTRAL INCISOR: A CASE REPORT
Putu Ferbika¹, Latief Mooduto³ .. 587

SMILE MAKEOVER IN THE PATIENT WITH MULTIPLE CARIES, FRACTURE AND LABIOVERSION
Ratih Elisa Nandarani¹, Kun Ismiyatin¹ ... 593

ROOT CANAL TREATMENT IN FIRST LOWER LEFT MOLAR WITH MIDDLE MESIAL AND RADIX ENTOMOLARIS: CASE REPORT
Raymond Kandou*, Ninawati Prihadi** .. 599

ROOT CANAL TREATMENT WITH COMPOSITE RESIN RESTORATION AND POLYETHYLENE FIBER AS REINFORCEMENT IN MANDIBULAR RIGHT SECOND MOLAR TOOTH WITH A SINGLE ROOT CANAL
Reni Nofika*, Tunjung Nugrahendi** ... 607

THE CONSERVATIVE MANAGEMENT OF EXTERNAL ROOT RESORPTION OF PERMANENT INCISIVE CENTRAL CAUSED BY A TRAUMA: A CASE REPORT
Ruth Sarah Wibisono¹, Tamara Yuanita¹ .. 617

ROOT CANAL RETREATMENT OF PERIAPICAL ABSCESSES ON MAXILLARY LATERAL INCISOR
Sasi Suci Ramadhani¹, Ratna Medyawati² .. 623

APEXIFICATION AND ESTHETIC MANAGEMENT OF DISCOLORED AND FRACTURED NECROTIC TOOTH WITH IMMATURE ROOT: A CASE REPORT
Sinta Puspita Dewi³, Adiarto Soetedjo³ ... 629
RESTORATION DIRECT COMPOSITE CLASS I WITH TECHNICAL STAMP: A CASE REPORT
Ricky Yudatmoko¹, Laksmiari Setyowati² ... 639

AESTHETIC TREATMENT ON NON VITAL TRAUMATIC ANTERIOR TEETH BY INTRACORONAL BLEACHING
Sumitro TH¹, Nanik Zubaidah² ... 645

MANAGEMENT OF FRACTURED INSTRUMENTS BY FILE BYPASS TECHNIQUE IN ROOT CANAL MANDIBULAR MOLAR
Meita Herisa¹, Ratna Meidyawati² ... 651

BICUSPIDIZATION: TREATMENT FURCAL PERFORATION IN MANDIBULAR MOLAR
Tri Estiyaningsih¹, M.Rulianto² .. 659

THE ANTIMICROBIAL EFFECT OF DIODE LASER ON ENTEROCOCCUS FAECALIS BIOFILM
Ayu Sandini, Ratna Meidyawati .. 667

CASE REPORT
MANAGEMENT OF CRACK TOOTH SYNDROME ON VITAL TOOTH MAXILLARY LEFT FIRST MOLAR
Laili Aznur*, Irmaleny** .. 679
LITERATURE REVIEW

EFFECTIVENESS DIODE LASER AS ADDITIONAL DEVICE ON ROOT CANAL DISINFECTON

Chitra Ishtani1, Ratna Meidyawati2

1Resident, Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
2Lecturer, Department of Conservative Dentistry, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
chitra.ishtani@gmail.com

ABSTRACT

Disinfection of the root canal system is an important stage for successful root canal treatment. Traditionally, root canal disinfection is achieved by a combination of mechanical instrumentation, the use of disinfection irrigation solutions and the placement of medicaments between visits. The irrigation solution works by direct contact with the target and has limited penetration depth into the root canal system. Therefore, the irrigation solution is unable to eliminate the microorganisms from the deeper dentinal layers. Over the last few decades, various devices have been developed to improve penetration and effectiveness of irrigation in the peripheral areas of the root canal. One of the root canal disinfected devices that began to be developed was with the use of lasers. There are various types of lasers that exist in the field of dentistry, one of which is a diode laser. Laser diodes in endodontics are an innovative approach to root canal disinfection because it has the ability to penetrate into the dentin. Keywords: irrigation solution, disinfection, laser diode

INTRODUCTION

Endodontics is a branch of dentistry associated with the prevention, diagnosis and treatment of dental pulp pathoses.1 Pulp and periradicular abnormalities occur due to invasion of microorganisms into the hard tissue of the tooth and progress further until it reaches the root canal system.2 The main goal of root canal treatment is the elimination of microorganisms and their products and pathological debris from the root canal system to prevent re-infection.3

Root canal contamination by microorganisms and remaining necrotic soft tissue is considered a major cause of root canal treatment failure.4 At least 300 species of different microorganisms are found in root canal infections.5 The
eradication of deep microorganisms in the tubular system is a major and very important challenge in long-term dental care with root canal treatment.³

Endodontic treatment procedures rely on mechanical instrumentation, irrigation and medicament solutions between visits for disinfection of the root canal system.⁴ The use of an irrigation solution is an important step because it can help eliminate unaffected microorganisms during root canal preparation.⁵ However, irrigation solution works by direct contact with the target and has a limited depth of penetration into the root canal wall, so that the irrigation solution is not capable of eliminating the microorganisms from the deeper dentine layers.⁶ This is the reason for using a combination of disinfection solutions with irrigation devices. Traditionally, the irrigation solution is delivered into the root canal through an irrigation needle. The problem with the irrigation needle technique is the replacement of irrigation along the root canal is inadequate, because the highest flow rate is only found in the lumen of the needle and around the needle tip.⁷

Although the use of an irrigation solution may decrease the number of microbes in the infected root canal, it fails to achieve the total disinfection goal of the root canal system. Therefore, root canal disinfection is a major challenge in endodontology and a fundamental principle important for long-term preservation of teeth with root canal treatment. The use of lasers in the endodontic field is a method developed to meet these challenges. In general, dental lasers provide access to tubular systems previously unattainable by irrigation solutions.⁸

There are various types of lasers that exist in the field of dentistry, one of which is a diode laser. The diode laser in the endodontic is an innovative approach to root canal disinfection because it has the ability to penetrate into the dentin.⁹ This laser is an option because of some advantages. Among others have a relatively small size compared to other lasers and easy to use. The antimicrobial effect of the laser depends on the dose of heat generated.⁵

The effectiveness of laser antimicrobials against microorganisms has been demonstrated in previous studies. However, based on several studies indicating that the laser alone is no more effective when compared to the irrigation solution, Baz and his colleagues conducted an in vitro study in 2012 to 60 single-rooted teeth. The study compared the effectiveness of root canal disinfection between the use of laser diodes, sodium hypochlorite irrigation solutions, and a combination of laser diodes with sodium hypochlorite. The results showed that disinfection using sodium hypochlorite irrigation solution eliminated more bacteria than laser disinfection. However, fast group disinfection of sodium hypochlorite combinations with lasers showed significantly greater amounts of bacterial elimination.¹⁰
Another study of the diode laser against bacteria by Kaifar and friends in 2013 also gave the same results. The laser beams of the diode with the irrigation solution produces the highest rate of root canal disinfection when compared with disinfection using only irrigation solution or diode laser alone. In the study obtained statistically significant differences.\(^3\)

In recent years, research on root canal disinfection techniques has improved, one of which is root canal disinfection with additional laser diodes.\(^4\) Numerous studies suggest that the combination of sodium hypochlorite irrigation solution with a laser diode provides a synergistic effect and can eliminate migrating bacteria to the deeper layers of dentin. Therefore, laser diodes combined with an irrigation solution are able to eliminate more bacteria in order to increase the success of root canal treatment.\(^5\) Therefore, in this paper we will discuss the use of laser diodes as a disinfection enhancer in root canal treatment.

REVIEW

a. Root Canal Treatment

Root canal treatment is a procedure that aims to eliminate the microorganisms causing the infection to form an environment in the root canal system that allows the healing process and maintenance of periapical tissue health.\(^6\) This goal can be achieved through the principle of endodontic triage. Endodontic triage consists of access preparation, root canal preparation and root canal filling. Access preparation plays an important role in determining the next two stages. Good access preparation can provide localization, root canal formation and cleaning, disinfection and filling of the root canal system.\(^6\)

Root canal preparation was done chemomechanically. After mechanical instrumentation, there are a number of untouched root canal areas, either by the use of manual techniques or rotary instrumentation.\(^7\) Therefore, the irrigation solution is used to reach the untouched area. The irrigation solution also has antimicrobial properties as part of the root canal disinfection stage.\(^8\)

The final stage of the endodontic triage is the filling of the root canal. Root canal filling is done to prevent microorganisms and tissue fluid from entering the root canal system that has been done chemomechanical preparation. It is expected to support the healing process and maintain healthy periapical tissue.\(^9\)

b. Irrigation as root canal disinfection

When microorganisms are in the root canal, it will be hard to achieve by the body's defense mechanism. Therefore, root canal infection removed by root canal treatment through mechanical procedure with additional chemical such as irrigation is an important stage in chemomechanical preparation.\(^10,11\) The objective of chemomechanical disinfection is to kill
microorganisms, remove dentine debris, dissolve organic and inorganic components that cannot be achieved by mechanical evacuation and as an irritant lubrication in biological tissues.16,17

Root canal disinfection using an antimicrobial irrigation solution and tissue solvent as an essential part of the chemomechanical debridement. Irrigation is a complementary instrumentation that facilitates the disposal of microorganisms, debris and necrotic tissue, especially from unprepared areas.17 The ideal irrigation solution has antimicrobial activity properties, is capable of dissolving organic tissue waste, root canal disinfection, discharges debris from an instrumented root canal, lubrication, and has no cytotoxic effect on periodontal tissue.17

c. Diode Laser
In 1960, Theodore Maiman was a scientist who developed the first laser device using a ruby crystal. A few years later, Laser stands for Light Amplification by Stimulated Emission of Radiation.18

Light Amplification by Stimulated Emission of Radiation or Laser, indicating an energy transmission and not. The laser-emitted light is the result of a process called stimulated emission. Laser is a form of energy in the form of particles called photons and moves in the form of electromagnetic waves.19,20 Wavelength measurements are important for laser light, because they can determine how the laser beam is toward the target and the tissue reaction to a particular wavelength. The wavelength is measured in meters (m).20

Among the various lasers that emerged in the mid-1990s, diode lasers also debuted.21 Laser Diodes are one of the most widely developed types of lasers in the science of dentistry and the like with semiconductor active media that can be made of aluminium, gallium, arsenide and indium.21,22 Laser diodes are available in four different wavelengths, ie laser diodes with wavelengths of 810 to 830nm, 940nm, 980nm and 1064nm.21

Laser diodes can be used in various dentistry procedures. In the diode under use, periodontal pocket therapy, crowning equilibrium, inflamed tissue, pharyngitis and photostimulation of herpetic lesions.21,22 Laser diodes can also be applied to procedures involving hard tissues such as teeth. One of these is in endodontic treatment such as root canal disinfection.21,22
Some of the advantages of diode lasers are the small size and flexibility to a wide range of treatment applications including extensive use in different areas of dentistry (figure 1). The relatively small size of the diode laser also provides other benefits, requiring a relatively small area of the workspace and good portability that are easy to transport and relatively light.

d. Application of diode laser

Laser diodes use flexible glass fibers to channel energy to the desired target area. Generally, a flexible glass fiber is inserted into the handpiece so it can be applied to the tissue. There are several things to consider when using glass fiber, such as the selection of fiber diameter to be used. The flexible glass fiber in the diode laser is available in diameters of 200-320 μm. The size of glass fiber diameter of 290 μm is equivalent to file size 20. The thin glass fiber diameter allows the delivery of laser light directly into the root canal so as to effectively provide disinfection effect.

In addition to diameter, which is useful to noting is the speed of movement of the fiber end during treatment. Burned tissue are an unwanted side effect due to excessive force or movement of the fiber ends too slowly. The glass fiber is placed 2mm from the working length, then with the circular motion moving from apical to corona. The movement aims for the laser beam to reach the overall root dentine (figure 2).
DISCUSSION

The elimination of bacteria in the inner dentin layer is a challenge and will affect long-term maintenance of root canal treatment. The irrigation solution applied during conventional root canal treatment works through direct contact with bacteria. Due to the limited depth of penetration, the irrigation solution causes bacteria that are in the dentin layer not affected by the disinfection effect.21

The diode laser disinfection effect can be ascribed to the diode laser penetration capability of up to 1,000 μm into the dentin tubule. This is very different when compared to root canal disinfection using a finite irrigation solution penetrating up to 100 μm, whereas the penetration of microorganisms can reach a depth of 1,000 μm (Figure 3). The diameter of the dentinal tubules decreases significantly in the deeper dentin layers, so the penetration of the irrigation solution is limited. Laser rays with properties and characteristics, as well as increased focal intensity, allow laser light to penetrate into the dentinal tubules and affect the effectiveness of antimicrobials.18,27

The introduction of laser in the field of endodontics has increased the effectiveness and success of root canal treatment. In general, dental lasers provide accessibility to the dentin tubule system so that better penetration can be achieved.23 Root canal disinfection using laser diodes is a new approach in the endodontic field. Laser beams are considered capable of reaching areas that are unattainable by traditional techniques. The bactericidal effect of the diode laser is obtained from the resulting heat dose. The effectiveness of antimicrobial lasers against different microorganisms has been demonstrated in previous studies. However, based on several studies indicating that the laser alone is no more effective when compared to the irrigation solution,8

Baz and his colleagues conducted an in-vitro study in 2012 to 60 single-rooted teeth. The study compared the effectiveness of root canal disinfection between the use of laser diodes, NaOCl solutions, and the combination of diode lasers with NaOCl. The results showed that disinfection using NaOCl irrigation solution eliminated more bacteria when compared with disinfection using laser diode. However, the test group of NaOCl combination disinfection with laser diodes showed significantly greater amounts of bacterial elimination. The combination of the NaOCl irrigation solution with the diode laser provides a synergistic effect and can eliminate the migrating bacteria in the deeper layers of dentin. Therefore, laser diodes combined
with an irrigation solution are able to eliminate more bacteria in order to increase the success of root canal treatment.19

The temperature 7\textdegree C is considered the highest biologically acceptable temperature threshold to prevent periodontal damage.19 Several studies have concluded that the use of a 980nm diode laser for root canal treatment results in an increase in temperature at the external root surface. Hmaed et al (2010) in his study found that the highest increase in temperature on the external root surface after the use of a diode laser with an irrigation solution was 4\textdegree C. Irrigation solutions are considered effective in minimizing thermal changes in the root canal and external root surfaces20. In the same year, another study by Hmaed et al gave results that the 980 diode laser was able to induce cavitation on water-based media through the formation and explosion of water vapor.19

The pressure waves generated by the diode laser are thought to play a role in clearing debris in the root canal. This is derived from the diode laser's ability to generate pressure waves and form cavitation. Cavitation is the formation of vapor bubbles in the liquid. This process causes the formation of pressure waves characterized by rapid changes in pressure and high amplitude. The pressure of the bubbles produces an explosion that affects the surface, causing shear forces, surface deformation and material release at the surface. In the root canal, the bubble pressure has the potential to damage the biofilm of the microorganism, rupture the cell wall of the microorganism and release the smear layer and debris. Bubble pressure can also improve the solution of the irrigation solution thus increasing the ability of disinfection.19

CONCLUSION

The main goal of root canal treatment is disinfection of the root canal system from bacteria that cause pulp or periapical abnormalities. When bacteria infect the pulp tissue, the bacteria also penetrate into the deeper dentine root layer. The eradication of bacteria deep in the tubular system is a major challenge and an important part of the long-term maintenance of teeth with root canal treatment.

The irrigation solution applied during conventional root canal treatment works by direct contact with the target bacteria. However, the effect of irrigation solution is only limited to the most superficial layers of root dentin due to the limitation of penetration ability of the irrigation solution, so that bacteria in the deeper dentine layer are not affected by the disinfection effect. Considering the weakness of the irrigation solution in root canal treatment, new methods have been developed to obtain effective root canal clearance, one of which is the laser.

Lasers are the latest choice in combating root canal microorganisms, especially in deep dentine tubules. Different types of lasers are emerging, one of which is the diode laser which is the
most popular type of laser because of its penetration ability and antibacterial effect and its size is relatively small compared to other types of lasers.

The antimicrobial effect of the laser depends on the dose of heat generated. Based on several studies it has been proven that the laser alone is no more effective than the irrigation solution. However, the combination of irrigation and laser diode solutions resulted in significantly better disinfection. Therefore, the diode laser is effective as a root canal disinfection device because the irrigation solution combined with the diode laser has been shown to have a synergistic effect and can eliminate migrating bacteria to the deeper layers of dentin.

REFERENCES

