Jurnal Teknologi mempublikasikan hasil penelitian ilmiah di Bidang Ilmu Teknik berupa penelitian dasar, perencanaan, perancangan dan studi pengembangan teknologi. Jurnal Teknologi terbit secara berkala iiga bulanan (Maret, Juni, September dan Desember).

Ketua Penyunting: Dr.-Ing. Ir. Nandy Putra

Koordinator: Prof. Dr. Ir. Irwan Khatili
Prof. Dr. Ir. Bambang Suryawan, MT.
Dr. Ir. Muhamad Asvial
Prof. Dr. Ir. Anne Zulfia
Ir. Kemas Ridwan K., Ph.D
Mahmud Sudibandriyo, Ph.D
Ir. Isti Surjandari, MT., MA., Ph.D.

Mitra bestari edisi ini FTUI: Dr. Ir. GS. Boedi Andari
Dr. Ir. Yusuf Latief
Dr.-Ing. Nasrurrian, M.S.c
Prof. Dr. Ir. Raldi Artono Koestur
Dr. Ir. Gandjar Kiswanto, M.Eng.
Dr. Ir. Danardono Agus S.
Prof. Dr. Ir. Djoko Hartanto, MSc
Prof. Ir. Eko Tjipo Rahardjo, MSc, Ph.D
Dr. Ir. Purnomo Sidi Priambodo
Dr. Ir. Ridwan Gunawan, MT
Dr. Ir. Heri Hermansyah
Dr. Ir. Anondho Wijanarko, M.Eng.
Dr. Ir. Setijo Bisno DEA
Dr. Ir. Yuswan Muharam
Mahmud Sudibandriyo, Ph.D
Prof. Dr. Ir. M. Nasikin

Mitra bestari edisi ini luar FTUI: Prof. Krisna Mochtar (ITI)
Dr. Ir. Adi S. (ITS)

Pelaksana Teknis: Noviane Marini

Rekening
Bank BNI 46 Cab. UI-Depok, Rek. No. 003.455.5624, a.n. Dana Operasional FTUI

Sekretariat Redaksi
Gedung Dekanat Lantai 1
Fakultas Teknik Universitas Indonesia, Kampus Baru UI Depok, Depok 16424
Telp./Fax.: (021) 7863506, email: jurnai@eng.ui.ac.id
© Jurnal Teknologi
Daftar Isi

Karacteristik Air Baku Terhadap Kesediaan Membayar Pelanggan Air Minum Di DKI Jakarta
Dyoko M. Hartono

Gambaran Kinerja Supply Chain pada Proyek Konstruksi Bangunan Gedung
R. D. Wirahadikusumah, B.W. Soemardhi, M. Abyah, C. Z. Okaviani

Penggunaan Modul Termoelektrik pada Proses Agarose Gel Electrophoresis untuk Mempercepat Pemisahan Fragmen Asam Nukleat (DNA)
Danardono, Nandy S. Putra, Hoolsa Rahman, Budiman Beka

Pembuatan Model Alat Ukur Simpangan (SAG) pada Guylines Anchor Safety Menara Pengeboran Minyak di Darat (Onshore Rig) Menggunakan Empat Strain Gages
Hendri D.S. Budiono, Wabiyudin Pernana

Pengaruh Penskalaan Arah Lateral dan Vertikal Terhadap f_s dan f_max HBT SiGe
Engelin Shinta Dewi Julian

A New Direct Torque Control Scheme of Permanent Magnet Synchronous Motor Drives to Reduce Torque Ripple
Tole Santoso, Nik Runzi Nik Idris, Auzani Jadin

Simulasi Rantai Suplai Biodiesel untuk Substitusi Bahan Bakar Solar Pada Sektor Transportasi di Propinsi DKI Jakarta
Asep Handaya Saputra, Yusrwan Muharam, Renita Anggreini

Potensi Batubara Lokal Teraktivasi untuk Penanganan Limbah Cair Benzena dan Toluena
Mahmud Sudhandriyo, Sri Mulyati

Review on H-ZSM-5 Catalyst for Production of Hydrocarbons From Renewable Organic Compounds
Serati, Slamet, Muhammad Nasikin, Toshio Tsuchi, Toshinori Kojima

Perkembangan Pelumas Ramah Lingkungan Berbasis Minyak Nabati
Sukarno, S. Bisma, M. Nasiri
Perkembangan Pelumas Ramah Lingkungan Berbasis Minyak Nabati

Sukirno, S. Bismo, dan M. Nasikin
Departemen Teknik Kimia, Fakultas Teknik Universitas Indonesia,
Kampus Baru UI, Depok 16424
e-mail : sukirnos@che.ui.edu

Abstrak

Produk pelumas, sampai sekarang sebagian besar masih berasal dari petroleum, namun meningkatnya kepedulian terhadap dampaknya terhadap konservasi ekologi mendorong dikembangkannya pelumas ramah lingkungan berbasis minyak nabati. Sebagian bahan pelumas, minyak nabati memiliki keunggulan seperti antiwear yang baik, biodegradable dan tak beracun, sedangkan kelemahannya adalah rendah ketahanan oksidasi dan buruk fluiditasnya pada suhu rendah. Minyak nabati dapat diterapkan menjadi pelumas ramah lingkungan berbaur kerja tinggi melalui modifikasi gugus karbonihydra, misalnya, metilolpropan ester yang dapat diproduksi dengan cara menggantikan gliserol dari trigliserida dengan metilolpropan, atau melalui modifikasi ikatan rangkap karbon-karbon pada rantai asam lemaknya. Misalnya reaksi hidrogenasi selektif, dimerisasi, epoxidasi dan lain-lain. Namun biaya proses modifikasi yang tinggi mendorong penggantian minyak nabati langsung, yaitu minyak nabati yang memiliki kandungan asam olate tinggi. Tulisan ini juga mendiskusikan kemungkinan pemanfaatan minyak sawit sebagai pelumas, dengan mempertimbangkan karakteristik spesifiknya sebagai minyak nabati daerah tropis.

Kata kunci : Pelumas ramah lingkungan, minyak nabati, modifikasi, trigliserida

Abstract

Most of lubricating oils are based on petroleum, but awareness and concern over the usage of petroleum base products and their impact on environment has created an opportunity to develop eco-friendly lubricants from vegetable oils. As raw material of lubricant, the vegetable oils provides many advantages such as good antiwear property, biodegradability, non toxic, but it has low oxidation resistance and poor fluidity at low temperature. Vegetable oil can be transformed to high performance eco-friendly lubricant, via modification of carbonyl group, such as trimethylolpropane ester which can be produced by replacing glycerol of triglyceride with trimethylolpropane, or via modification of carbon-carbon double bond in fatty acid chain of triglyceride such as selective hydrogenation, dimerization, epoxidation and others. Modified vegetable oil, such as synthetic ester may offer high performance lubricant, but its process production cost can be prohibitively high, therefore it gives rise to the direct usage of high olein vegetable oil for lubricant formulation. This paper also discusses the application of palm oil for lubricant, by considering its specific characteristic as vegetable oil from tropical region.

Key word: Eco-friendly lubricant, modified vegetable oil and triglyceride.

1. Pendahuluan

Pemanfaatan minyak nabati untuk pelumas telah ada bahkan sebelum peradaban roda, misalnya penggunaannya pada kereta luncur. Namun setelah ditemukannya minyak bumi (petroleum), pelumas nabati tersingkir oleh pelumas mineral yang dihasilkan dari fraksionasi minyak bumi tersebut. Pada saat awal abad 19, pelumas mineral dianggap lebih mampu memenuhi tuntutan revolusi industri, karena lebih tahan panas dan oksidasi pelumas nabati semakin tergeser secara telak karena ketersediaan pelumas mineral berlimpah harga yang lebih murah.
7. Kesimpulan


Khusus untuk Indonesia, sebagai produsen minyak sawit terbesar memiliki kesempatan untuk mengembangkan potensi khasnya. Minyak sawit sebagai minyak nabati daerah tropis, memiliki komposisi khas yaitu banyak mengandung asam lemak saturated, yang berarti ketahanan oksidasiya baik dan fluiditasnya buruk. Aplikasinya untuk pelumas daerah tropis, dengan mengabaikan fluiditas, dipertimbangkan dapat mengurangi biaya proses produksi.

Untuk saat ini aplikasi pelumas ramah lingkungan diutamakan untuk sistem pelumasan total loss dimana pelumas tanpa dapat dihindarkan akan terbuang ke lingkungan.

Daftar Acuan


