Reviews

171 The Many Faces of Dissociation: Opportunities for Innovative Research in Psychiatry

180 Protocol and Rationale-The Efficacy of Minocycline as an Adjunctive Treatment for Major Depressive Disorder: A Double Blind, Randomised, Placebo Controlled Trial

189 Are Auditory Hallucinations Related to the Brain’s Resting State Activity?
 A ‘Neurophenomenal Resting State Hypothesis’

196 Serotonin and Mental Disorders: A Concise Review on Molecular Neuroimaging Evidence

Original Articles

203 Executive Dysfunction among Children with Antipsychotic Treated Schizophrenia

209 Regulation of Interleukin-6 and Leptin in Schizophrenia Patients: A Preliminary Analysis

215 Effects of Add-on Ramelteon on Cognitive Impairment in Patients with Schizophrenia: An Open-label Pilot Trial

218 Two-channel Near-infrared Spectroscopic Analysis of Association of Paranoia Symptoms with Prefrontal Activation

222 Bilateral Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations in Patients with Schizophrenia: A Randomized Controlled, Cross-over Study

229 No Effect on Body Dissatisfaction of an Interaction between 5-HTTLPR Genotype and Neuroticism in a Young Adult Korean Population

Case Reports

235 Adolescent with Tourette Syndrome and Bipolar Disorder: A Case Report

240 Post-traumatic Stress Disorder Symptoms in a Female Patient Following Repeated Teasing: Treatment with Gabapentin and Lamotrigine and the Possible Role of Sensitization
Clinical Psychopharmacology and Neuroscience

Vol. 12 No. 3 December 2014

Aims and Scope

Clinical Psychopharmacology and Neuroscience (Clin Psychopharmacol Neurosci), launched in 2003, is the official journal of the Korean College of Neuropsychopharmacology (KCPN), and the associate journal for Asian College of Neuropsychopharmacology (AsCNP). This journal aims to publish evidence-based, scientifically written articles related to clinical and preclinical studies in the field of psychopharmacology and neuroscience. This journal intends to foster and encourage communications between psychiatrist, neuroscientist and all related experts in Asia as well as worldwide. It is published three times a year at the end of April, August, and December.

Editorial Board

Bumseok Jeong, MD, PhD
Korea Advanced Institute of Science and Technology (KAIST), Korea

Myung Hun Jung, MD, PhD
Hallym University, Korea

Bong Ju Lee, MD, PhD
Inje University, Korea

Kyu Young Lee, MD, PhD
Eulji University, Korea

Seung Hyuk Lee, MD
CHA University, Korea

Soyoung Irene Lee, MD, PhD
Seoul National University, Korea

Jong-Il Park, MD, PhD, LLM
Kangwon National University, Korea

Eric Yu Hai Chen, MD
University of Hong Kong, Hong Kong

Sei-Ichiro Chong, MD
Institute of Mental Health, Singapore

Yuan Hwa Chou, MD, PhD
Taipei Veterans General Hospital, Taiwan

Yasuyuki Fukumaki, MD, PhD
Kyushu University, Japan

Keni Hashimoto, PhD
Chiba University, Japan

Tatsuro Kishimoto, MD
Keio University, Japan

Masafumi Muzuno, MD, PhD
Toho University, Japan

Kuan-Si Mu, MD, PhD
China Medical University, Taiwan

Si Tianmei, MD
Peijing University Institute of Mental Health, China

Tjin Wibawa, MD, PhD
University of Indonesia, Indonesia

Ross Baldossarini, MD
Harvard Medical School, USA

Michael Berk, MD
Deakin University, Australia

J. Alexander Bodkin, MD
Harvard Medical School, USA

André F. Carvalho, MD, PhD
Federal University of Coara, Brazil

Leslie Citrome, MD, MPH
New York Medical College, USA

Christoph U. Correll, MD
Hofstra North Shore LIJ School of Medicine, USA

Wolfgang Fleischhacker, MD
Innsbruck University, Austria

Alan J. Gelenberg, MD
Penn State University, USA

Nassir Ghaemi, MD
Tufts University, USA

Corinna Katona, MD
University College London, UK

Bernard Lerer, MD
Hadassah-Hebrew University, Israel

Brian Leonard, PhD
National University of Ireland, Ireland

Jeffrey A. Lieberman, MD
Columbia University, USA

Prakash S. Masand, MD
Global Medical Education, USA

Hans-Jürgen Müller, MD
Ludwig-Maximilians University, Germany

Stuart A. Montgomery, MD
University of London, UK

J. Craig Nelson, MD
University of California San Francisco, USA

Andrew A. Niernberg, MD
Harvard Medical School, USA

Ashwini A. Patkar, MD
Duke University, USA

Alessandro Serretti, MD, PhD
Bologna University, Italy

Eduard Vieta, MD
University of Barcelona, Spain

Changliu Zhou, PhD
University of Wisconsin-Madison, USA

Clinical Psychopharmacology and Neuroscience is indexed in CAS, DOAJ/Crossref, EMBASE, Korea Citation Index (KCI), KoreaMed, KoreaMed Synapse, Korea Medical Citation Index (KoMCI), PubMed, PubMed Central (PMC), SCOPUS, SCII-expanded (SCI), and Google Scholar.

All of the articles of this journal could be accessed in our website (www.cppn.or.kr). For subscription, submission and all other information, visit our website.

Publisher: Won-Myung Bahk / Editor-in-Chief: Young-Chul Chung
Published by: Korean College of Neuropsychopharmacology
RN. 1003 Life Office, 40, 63-ro, Yeongdeungpo-gu, Seoul 150-731, Korea
TEL: +82-2-784-2742 / FAX: +82-2-784-5542
E-mail: secretariat@kcpn.or.kr / Chunghye@knu.ac.kr / Web: www.cppn.or.kr
Printing Correspondence: MEDIANG Inc. 8-17 Worldcup-ro 5-ga-gi, Mapo-gu, Seoul 121-841, Korea
TEL: +82-2-325-2093 / FAX: +82-2-325-2095 / E-mail: info@mediang.co.kr / Homepage: www.mediang.co.kr

Copyright © 2014 Korean College of Neuropsychopharmacology
Printed: December 20, 2014, Issued: December 31, 2014

This journal was supported by the Korean Federation of Science and Technology Societies (KOFST) Grant funded by the Korean Government.
Editorials

Friends Who Have the Same Dream Walk Together
Young-Chul Chung

For the Future of Asia Collaboration
Yu Xin

Reviews

The Many Faces of Dissociation: Opportunities for Innovative Research in Psychiatry
Vedat Şar

Protocol and Rationale-The Efficacy of Minocycline as an Adjunctive Treatment for Major Depressive Disorder: A Double Blind, Randomised, Placebo Controlled Trial
Olivia May Dean, Michael Maes, Melanie Ashton, Lesley Berk, Buranee Kanchanatawan, Asapol Suhandhabiron, Sookjareon Tangwongchai, Chee Ng, Nathan Dowling, Gina S. Mahi, Michael Berk

Are Auditory Hallucinations Related to the Brain’s Resting State Activity? A ‘Neurophenomenal Resting State Hypothesis’
Georg Northoff

Serotonin and Mental Disorders: A Concise Review on Molecular Neuroimaging Evidence
Shih-Hsien Lin, Lan-Ting Lee, Yen Kuang Yang

Original Articles

Executive Dysfunction among Children with Antipsychotic Treated Schizophrenia
Tjhin Wiguna, Anthony Paul Sison Guerrero, Shuji Honjo, Irawati Ismail, Noorhana Setyowati WR, Fransiska Kaligis

Regulation of Interleukin-6 and Leptin in Schizophrenia Patients: A Preliminary Analysis
Sasi Neelamekam, Milaway Nurjono, Jimmy Lee

Effects of Add-on Ramelteon on Cognitive Impairment in Patients with Schizophrenia: An Open-label Pilot Trial
Yukihiko Shirayama, Michio Takahashi, Masatoshi Suzuki, Yoshiaki Tsuruoka, Koichi Sato

Two-channel Near-infrared Spectroscopic Analysis of Association of Paranoia Symptoms with Prefrontal Activation
Kazuki Hirao

Bilateral Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations in Patients with Schizophrenia: A Randomized Controlled, Cross-over Study
Eun-Ji Kim, Seonguk Yeo, Inho Hwang, Jong-II Park, Yin Cui, Hong-Mei Jin, Hyung Tae Kim, Tae-Young Hwang, Young-Chul Chung

No Effect on Body Dissatisfaction of an Interaction between 5-HTTLPR Genotype and Neuroticism in a Young Adult Korean Population
Seung-Keun Wang, Young-Ho Lee, Jeong-Lan Kim, Il-Seung Chee
Case Reports

Adolescent with Tourette Syndrome and Bipolar Disorder: A Case Report
Se-Hoon Shim, Young-Joon Kwon
235

Post-traumatic Stress Disorder Symptoms in a Female Patient
Following Repeated Teasing: Treatment with Gabapentin and Lamotrigine and the Possible Role of Sensitization
Akira Kishimoto, Yurie Goto, Kenji Hashimoto
240

Correction

Erratum: Figure Correction
Su-Xia Li, Ji-Chun Zhang, Jin Wu, Kenji Hashimoto
243
Executive Dysfunction among Children with Antipsychotic Treated Schizophrenia

Tjhin Wiguna1, Anthony Paul Sison Guerrero2, Shuji Honjo3, Irawati Ismail1, Noorhana Setyowati WR4, Fransiska Kaligis1

1Child and Adolescent Psychiatry Division, Department of Psychiatry, University of Indonesia, Jakarta, Indonesia, 2Department of Psychiatry and Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA, 3Department of Child Psychiatry, Center for Developmental Clinical Psychology and Psychiatry, Nagoya, Japan

Objective: To investigate the executive function among adolescents with antipsychotic–treated schizophrenia in Child and Adolescent Outpatient Clinic at Cipto Mangunkusumo General Hospital, Jakarta.

Methods: This was a cross-sectional study with control group. Case was defined as adolescents with antipsychotic–treated schizophrenia without any mental retardation or other physical illnesses (n=45). The control group consisted of healthy and age–matched adolescents (n=136). Executive function is determined by using Indonesian version of Behavior Rating Inventory of Executive Function (BRIEF–Indonesian version). We used SPSS 16.0 program for windows to calculate the prevalence risk ratio (PRR) and set up the p value <0.05.

Results: Mean of age was 16.27 (standard deviation 1.86) year–old. Most of the case group (95%) has been treated with atypical antipsychotic such as risperidone, aripiprazole, olanzapine, and clozapine. Duration of having antipsychotic medication was ranged from one to 38 months. Adolescents with antipsychotic treated–schizophrenia had higher BRIEF T-score, except for Inhibit scale, Shift scale and behavior regulation index. The prevalence risk ratio on several clinical scales were higher in children with antipsychotic–treated schizophrenia compared to control group, such as on emotional state (PRR=7.43, 95% confidence interval [CI]=2.38–23.15), initiate scale (PRR=6.32, 95% CI=2.51–15.95), monitor scale (PRR=8.11, 95% CI=2.0–32.86), and behavior regulation index (PRR=4.09, 95% CI=1.05–15.98).

Conclusion: In general, the results showed that adolescents with atypical antipsychotic treated–schizophrenia had higher BRIEF T-score compared, and comparable with their normal group control.

KEY WORDS: Childhood schizophrenia; Antipsychotics; Executive function; Indonesia.

INTRODUCTION

Schizophrenia among children and adolescents is a serious and devastating mental illness. While the exact etiology is not known, there are likely various genetic and psychosocial contributors. There are several symptoms common to both adult and childhood schizophrenia; however, in the latter, the onset is earlier and the prognosis is poorer. Children and adolescents with schizophrenia often present with the insidious onset of auditory and visual hallucinations, flat or inappropriate affect, delusions, and a formal thought disorders. At times, the signs and symptoms may be a challenge to distinguish from normal development. Children and adolescents with this disorder often have severe premorbid neurodevelopmental histories, neurobiological and cytogenetic abnormalities, stronger family history of mental illnesses compared to adult schizophrenia.

Childhood schizophrenia is a rare condition, with an estimated prevalence of 1 in 40,000. Very early onset schizophrenia (before age 13 years) is even rarer, occurring in 1 in 500,000. By comparison, recent studies show that schizophrenia overall occurs in 1% of the world’s population, irrespective of country and culture.

The neurodevelopmental abnormality in children with schizophrenia includes abnormalities in the amplitude and synchrony of oscillations during neural development, leading to cognitive deficits and psychotic symptoms. Specifically, Uhilaas and Singer revealed that childhood schizophrenia is associated with impaired synchronous oscillations during late brain maturation. Douaud et
explained that children with schizophrenia had sensorimotor cortical and corticospinal tract structural abnormalities that remained stable over the period of observation. It is likely that understanding the mechanisms of childhood brain development may be key to the prevention and treatment of this disorder.

Children and adolescents with schizophrenia appeared to have reducing total brain volume, but this finding is not consistent across all studies. Several studies have found abnormalities in the shape and spatial location of the corpus callosum, caudate, and thalamus. Similar abnormalities are also observed in adult onset patients. Ventricular enlargement, reflecting progressive degenerative changes, appears in the brains of children with schizophrenia, but the degree of enlargement appears to reach an asymptote during young adulthood.15,16

On formal testing, they generally demonstrate poor attention, processing speed, visual-motor and motor function, and executive function.17-21 Executive function, through coordinating multiple, complex sub-processes in the brain through the frontal lobe, makes possible problem solving, response inhibition, strategy development and implementation, and working memory.17 Therefore, children and adolescents with schizophrenia often have significant difficulties with tasks of daily functioning, including learning, socializing and self care. Hence, management of child and adolescent schizophrenia should include not only management of the hallucinations, delusions, and/or formal thought disorder, but also the improvement of cognitive and executive function and overall quality of life.

Antipsychotic medications such as haloperidol, trifluoperazine, risperidone, olanzapine, quetiapine, etc. sequentially bind onto different target receptors in the brain in a dose-dependent and concentration-dependent manner. All available anti-psychotics work by blocking the dopaminergic receptors to some extent, but differences in receptor binding affinities generally explain differences in the clinical profile of these drugs (in terms of clinical responses, side effects, etc.).22 Atypical antipsychotics work by more potent antagonism (compared to typical antipsychotics) toward serotonin-2A relative to D\textsubscript{2} receptors (Table 1).22,23

Nowadays, antipsychotic medications are widely used in treating children and adolescents with schizophrenia, and several randomized control trials have already been done for this population.24-26 Several studies have shown that, compared to typical antipsychotics, atypical antipsychotics seem to have better effects towards executive function.22-25 Risperidone has demonstrated a consistently positive effect on working memory and executive function, while olanzapine appears to improve verbal learning and memory, verbal fluency, and executive function.23

The aim of this study was to identify the executive dysfunction among adolescents with antipsychotic treated-schizophrenia. The study assumed that there weren’t any differences on executive function among adolescents with antipsychotic treated-schizophrenia compared to adolescents in control group.

METHODS

This was a cross-sectional study with control group. Case group consisted of 45 adolescents from 12 to 18-years old with antipsychotic treated-schizophrenia seen at the Child and Adolescent Psychiatry (CAP) outpatient clinic Cipto Mangunkusumo General Hospital, Jakarta. They visited the CAP outpatient clinic between 2011 and 2012. The inclusion criteria consisted of parental consent to the study, while the exclusion criteria included mental retardation and other chronic physical illnesses.

<table>
<thead>
<tr>
<th>Antipsychotic</th>
<th>D\textsubscript{2}</th>
<th>5-HT\textsubscript{IA}</th>
<th>5-HT\textsubscript{2A}</th>
<th>5-HT\textsubscript{IC}</th>
<th>(d)</th>
<th>H\textsubscript{1}</th>
<th>M\textsubscript{1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone</td>
<td>3.3</td>
<td>210</td>
<td>0.2</td>
<td>25</td>
<td>2</td>
<td>58.8</td>
<td>>10,000</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>11</td>
<td>>10,000</td>
<td>4</td>
<td>23</td>
<td>19</td>
<td>7</td>
<td>1.9</td>
</tr>
<tr>
<td>Clozapine</td>
<td>180</td>
<td>875</td>
<td>1.6</td>
<td>16</td>
<td>9</td>
<td>2.8</td>
<td>75</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>160</td>
<td>2,800</td>
<td>294</td>
<td>1,500</td>
<td>62.5</td>
<td>11</td>
<td>120</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>3.4</td>
<td>1.7</td>
<td>3.4</td>
<td>15</td>
<td>57</td>
<td>61</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

- D\textsubscript{2}: Dopamine receptors.
- 5-HT\textsubscript{IA}: Serotonin receptor.
- 5-HT\textsubscript{2A}: Serotonin receptor.
- 5-HT\textsubscript{IC}: Serotonin receptor.
- \(d\): D\textsubscript{2}/5-HT\textsubscript{IA} ratio.
- H\textsubscript{1}: Histamine receptor.
- M\textsubscript{1}: M\textsubscript{1} muscarinic acetylcholine receptor.

D, dopamine; 5-HT, serotonin; \(d\), alpha-1 norepinephrine; H\textsubscript{1}, histamin; M\textsubscript{1}, muscarinic acetylcholine-1. Based on the article of Gardner et al.20 (CMAJ 2005;172:1703-1716).
Control group consisted of age-matched group adolescents (n=135) but without any chronic medical or psychiatric illnesses, did not have any intellectual disability, no history of abuse. The research subjects of control group were selected by using the consecutive technique sampling, and obtained from the General Pediatric Clinic at Cipto Mangunkusumo General Hospital, Jakarta. We used the Mini Neuropsychiatric Interview (MINI) for kids to screen other mental disorders amongst both the study and control subject groups (Fig. 1). The protocol of this study has already been approved by the Ethic Committee from the Faculty of Medicine University of Indonesia.

Instrument

The executive function was assessed by using the Indonesian version of the Behavior-Rating Inventory of Executive Function (BRIEF-Indonesian version). BRIEF was designed by Gerald A. Giogia and Peter K. Isquith in 2002 with the intent of evaluating executive function in children aged from 5-18 years by observing their daily behavior at home and at school. It includes a parent-completed questionnaire.

BRIEF has been validated into Indonesian language by the Department of Psychiatry, University of Indonesia. It consists of 86 statements, rated on a three-point likert scale (1—never happened, 2—sometimes happened, 3—always happened) and organized in 8 clinical scales: inhibition, shift, emotional control, initiate, working memory, plan/organize, organization of material, and monitor scale. In addition to sub-scores in each of the domains, the BRIEF also yields summary index scores, including the Global Executive Composite, a summation from the 8 clinical scales; the Metacognition Index, a summation from initiate, working memory, plan/organize, monitor, and organization of material scales; and the Behavior Regulation Index (BRI), a summation from inhibit, shift, and emotional control scales.

The BRIEF raw data were converted into T-scores. The higher T-scores reflecting a disturbance in each domain of executive function. The BRIEF Indonesian version pointed the cut-off for T-scores was 65 to determine the executive dysfunction with 85% of sensitivity and 81% specificity. The BRIEF data in this study appeared to be valid and consistent, as the inconsistency level was less than 9 and the negativity level was less than 7.

We also administered questionnaires to record socio-demographic information, weight (kg) and height (cm) status, and the clinical global impression for improvement (CGI-I) scale.

Statistical analysis

We analyzed the data by using SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL, USA). We applied the Kolmogorov-Smirnov normality test to characterize the normality of distribution of the data. Prevalence risk ratio (PRR) indicated as the prevalence probability of having dysfunction in the executive function among children with atypical antipsychotic treated schizophrenia compared to the control group. We used $p < 0.05$ as the point of value for statistical significant in this study.

RESULTS

The mean aged of research subjects either case or control group was 16.27 (standard deviation [SD] 1.86) years. All children with antipsychotic-treated schizophrenia
continue their school, and are described as having average class achievement nowadays.

Each child in case group only received one type of anti-psychotic during the treatment course. Ninety five percent of the case group was treated by using atypical anti-psychotic. The most prevalent atypical anti-psychotic used was risperidone (57.8%), and follow by aripiprazole, olanzapine and clozapine. Two children (5%) with schizophrenia were treated by using trifluoperazine.

The duration of anti-psychotic treatment ranged from one to 36 months, with the mean being 12.81 (SD 9.31) months. The CGI-I scale ranged from 1-6, with 58% of subjects receiving scale between 3-4. Children with anti-psychotic treated-schizophrenia had higher body mass indexes compared to the control group children although still in the normal range for both group. Most of the research subjects had a lower socioeconomic background (Table 2).

Children with antipsychotic treated-schizophrenia had significantly higher BRIEF T-scores on the emotional control, initiate, and monitor scale. On the other hand, they showed significantly lower T-scores for BRI (Table 3). Children with schizophrenia were at greater prevalent risk on emotional control (PRR 7.43, 95% confidence interval [95% CI] 2.38-23.15, p < 0.05), initiation of problem solving or activity (initiate scale; PRR 6.32, 95% CI 2.51-15.95, p < 0.05), and monitoring of own behavior (monitor scale; PRR 8.11, 95% CI 2.00-32.86, p < 0.05). They also demonstrated more prevalent to show problem in regulating their behavior (BRI; PRR 4.09, 95% CI 1.05-15.98, p < 0.05) (Table 3).

DISCUSSION

Many studies showed children and adolescents with schizophrenia were at risk having disabilities towards their daily functioning. This condition was associated with brain development especially in the prefrontal and limbic cortex, which was ultimately affecting cognition, executive function and emotional control. The executive system theory explains that brain is the central coordinating system to regulating and guiding behavior from time to time in a constantly changing environment.27 Various areas in the brain have been identified associating with the executive system such as the frontal, parietal, and occipi-

Table 2. The characteristic of the research subject's (n=180)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Case group (n=45)</th>
<th>Control group (n=135)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>11±18</td>
<td>11±18</td>
</tr>
<tr>
<td>Mean±SD</td>
<td>16.27±1.86</td>
<td>16.27±1.86</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>31 (68.89)</td>
<td>54 (40.00)</td>
</tr>
<tr>
<td>Female</td>
<td>14 (31.11)</td>
<td>81 (60.00)</td>
</tr>
<tr>
<td>Paternal ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Javanese</td>
<td>23 (51.10)</td>
<td>28 (20.74)</td>
</tr>
<tr>
<td>Sundanese</td>
<td>7 (15.55)</td>
<td>34 (25.19)</td>
</tr>
<tr>
<td>Minang</td>
<td>1 (2.22)</td>
<td>5 (3.70)</td>
</tr>
<tr>
<td>Balinese</td>
<td>3 (6.77)</td>
<td>1 (0.74)</td>
</tr>
<tr>
<td>Belawinese</td>
<td>11 (24.44)</td>
<td>64 (47.41)</td>
</tr>
<tr>
<td>Others</td>
<td>0 (0)</td>
<td>4 (2.96)</td>
</tr>
<tr>
<td>Parental socioeconomic status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>24 (53.33)</td>
<td>113 (87.70)</td>
</tr>
<tr>
<td>Middle</td>
<td>21 (46.67)</td>
<td>22 (16.30)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>21.87±35.21</td>
<td>12.39±31.00</td>
</tr>
</tbody>
</table>
| Mean±SD | 21.60±14.22 | 18.64±3.14 | p<0.05*

Values are presented as range, mean±standard deviation (SD), or number (%).
*By Mann-Whitney U test.

Table 3. Prevalence risk ratio (PRR) towards BRIEF domain (n=180)

<table>
<thead>
<tr>
<th>BRIEF domain</th>
<th>T-score, mean (SD)</th>
<th>p-value*</th>
<th>PRR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case group</td>
<td>Control group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibit scale</td>
<td>44.98 (1.02)</td>
<td>46.49 (1.80)</td>
<td>>0.05</td>
<td>0.50</td>
</tr>
<tr>
<td>Shift scale</td>
<td>46.53 (1.36)</td>
<td>46.55 (1.05)</td>
<td>>0.05</td>
<td>1.04</td>
</tr>
<tr>
<td>Emotional control scale</td>
<td>44.44 (1.33)</td>
<td>45.07 (8.55)</td>
<td><0.05</td>
<td>7.43</td>
</tr>
<tr>
<td>Behavioral Regulation Index</td>
<td>44.38 (9.93)</td>
<td>45.93 (7.17)</td>
<td><0.05</td>
<td>4.09</td>
</tr>
<tr>
<td>Initiate scale</td>
<td>41.44 (1.30)</td>
<td>47.39 (8.66)</td>
<td><0.05</td>
<td>6.32</td>
</tr>
<tr>
<td>Working memory scale</td>
<td>40.73 (7.50)</td>
<td>35.67 (6.50)</td>
<td>>0.05</td>
<td>1.34</td>
</tr>
<tr>
<td>Plan/organizes scale</td>
<td>49.40 (9.62)</td>
<td>46.75 (9.14)</td>
<td>>0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>Organisation of materials scale</td>
<td>47.96 (1.12)</td>
<td>45.80 (9.32)</td>
<td>>0.05</td>
<td>3.22</td>
</tr>
<tr>
<td>Monitor scale</td>
<td>47.04 (1.05)</td>
<td>43.66 (8.81)</td>
<td><0.05</td>
<td>8.11</td>
</tr>
<tr>
<td>Metacognition index</td>
<td>47.04 (1.03)</td>
<td>43.19 (8.59)</td>
<td>>0.05</td>
<td>2.81</td>
</tr>
<tr>
<td>Global executive composite</td>
<td>46.24 (8.94)</td>
<td>43.73 (7.46)</td>
<td>>0.05</td>
<td>0.81</td>
</tr>
</tbody>
</table>

*By Mann-Whitney U test.

SD, standard deviation; CI, confidence interval.
tal cortices, the thalamus and the cerebellum. Antipsychotic medication could reduce the psychotic symptoms by bonding with dopamine, serotonin, noradrenaline, muscarinic, and cholinergic receptors, but it is still not clear enough whether they necessarily have the same beneficial effects on the overall brain development, cognitive and executive functioning specifically. This study revealed that Indonesian children and adolescents with antipsychotic-treated schizophrenia demonstrated lower executive function in several domains compared to children in control group although they were still in normal range. In spite of having higher BRIEF T-score, they still could manage their daily functioning optimally. They can continue their school, keep their social interaction with their peer group and compete within their environment. They were more able to regulate their behavior and controlling their own impulse; they also could shift freely from one activity to another as the results of lower BRIEF T-score on the inhibition scale and shifting scale. In general they also had lower T-score on behavior regulation index, meant they could regulate their impulse better compared to children in the control group. This finding might be correlated with the effects of the antipsychotic on the dopaminergic and also serotonergic neurotransmitter in the mesolimbic-mesocortical pathway that could improve the behavior of the research subjects but further research need to be done. Overall, these findings increase the knowledge and understanding that using atypical antipsychotic gave a better outcome in children with schizophrenia.

On the other hand, the study findings would also explained that using atypical antipsychotic medication which has weaker potency on the muscarinic acetylcholine-1, glutamatergic, and cholinergic receptors give minimally effect on cognitive function in general and particularly on the executive function. Other protective factors in our research subjects were normal intellectual functioning as reflected by their abilities to continue their study although there weren't any examination for the intellectual functioning and an active socialized pre-morbid adolescents. The above factors were good predictors for better outcome in childhood schizophrenia.

This study revealed that children and adolescents with antipsychotic-treated schizophrenia had higher PRR for emotional dysfunction, poor monitoring on their own emotional regulation and decreasing the initiative skills respectively. This was an interesting part that should be focused, because it showed that atypical antipsychotic solely could not improve the whole aspects of the cognitive and executive function. Basically, they need other intervention approach and not only medications. Psychosocial interventions such as social skills training, cognitive remediation, anger management and also cognitive behavior therapy might help these children to overcome their boundaries.

There were several limitations of this study such as pre-morbid conditions only reported by parents, intellectual capacity examination and the course illness have not been analyzed thoroughly; information according to the previous cognitive training was not collected during the study; the length of antipsychotic used was not included in the analysis; the number of research subject with each type of antipsychotic medication was too small to be analyzed; not randomly selected due to the small number of children and adolescents with schizophrenia. On the contrary, this was the first study in Indonesia that tried to identify the executive function outcome of childhood schizophrenia treating by antipsychotic medication. This study also gave several positive feedbacks to family members such as good treatment outcome; stable daily functioning in post-treatment period, treatment compliance should be prioritized.

In conclusion, this study gave a clinical implication that using antipsychotic medication in treating childhood schizophrenia is very important for maintaining the executive function, but comprehensive management is the best in managing childhood schizophrenia.

Acknowledgments
This study did not get any funding and there is no any conflict of interest.

REFERENCES