Indian Journal of Public Health Research & Development

EXECUTIVE EDITOR

Dr. Manish Chaturvedi (Professor)
Community Medicine School of Medical Sciences & Research, Sharda University, Greater Noida

INTERNATIONAL EDITORIAL ADVISORY BOARD

1. Dr. Abdul Rashid Khan B. Md Jagar Din, (Associate Professor) Department of Public Health Medicine, Penang Medical College, Penang, Malaysia
2. Dr. V Kumar (Consulting Physician) Mount View Hospital, Las Vegas, USA
3. Basheer A. Al-Sum, Botany and Microbiology Dept, College of Science, King Saud University, Riyadh, Saudi Arabia
4. Dr. Ch Vijay Kumar (Associate Professor) Public Health and Community Medicine, University of Burami, Oman
5. Dr. VMC Ramaswamy (Senior Lecturer) Department of Pathology, International Medical University, Bukit Jalil, Kuala Lumpur
6. Kartavya J. Vyas (Clinical Researcher) Department of Deployment Health Research, Naval Health Research Center, San Diego, CA (USA)
7. Prof. PK Pokhariel (Community Medicine) BP Koirala Institute of Health Sciences, Nepal
8. Dr. Anand Kalaskar (Associate Professor) Microbiology, VIMS&RC, Bangalore
9. Dr. Ritu Goyal (Associate Professor) Anesthesiology, Sarswathi Institute of Medical Sciences, Panchsheel Nagar
10. Dr. Anand Kalaskar (Associate Professor) Microbiology, Prathima Institute of Medical Sciences, AP
11. Dr. Md. Amirul Hassan (Associate Professor) Community Medicine, Government Medical College, Ambedkar Nagar, UP
12. Dr. N. Girish (Associate Professor) Microbiology, VIMS&RC, Bangalore
13. Dr. BR Hungund (Associate Professor) Pathology, JNIMS, Belgaum.
14. Dr. Sartaj Ahmad (Assistant Professor), Medical Sociology, Department of Community Medicine, Swami Vivekananda Subharti University, Meerut Uttar Pradesh, India
15. Dr Sumeeta Soni (Associate Professor) Microbiology Department, B.J. Medical College, Ahmadabad, Gujarat, India

NATIONAL EDITORIAL ADVISORY BOARD

1. Prof. Sushanta Kumar Mishra (Community Medicine) GSL Medical College – Rajahmundry, Kamataka
2. Prof. D.K. Srivastava (Medical Biochemistry) Jamia Hamdard Medical College, New Delhi
3. Prof. M Srinivasab (General Medicine) GSL Medical College, Rajahmundry, Andhra Pradesh
4. Prof. Pankaj Datta (Principal & Prosthodontist) Indraprastha Dental College, Ghaziabad
5. Prof. Samarendra Mahapatra (Pediatrician) Hi-Tech Medical College, Bhubaneswar, Orissa
6. Dr. Abhiruchi Galhotra (Additional Professor) Community and Family Medicine, AIIMS Institute of Medical Sciences, Rajpur
7. Prof. Deepthi Pruthvi (Pathologist) SS Institute of Medical Sciences & Research Center, Davangere, Karnataka
8. Prof. G S Meena (Director Professor) Maulana Azad Medical College, New Delhi
9. Prof. Pradeep Khanna (Community Medicine) Post Graduate Institute of Medical Sciences, Rohtak, Haryana
10. Dr. Sunil Mehra (Paediatrician & Executive Director) MAMTA Health Institute of Mother & Child, New Delhi
11. Dr Shailendra Handu, Associate Professor, Phrma, DM (Pharma, PG in Chandigarh)
12. Dr. A.C. Dharwai: Directorate of National Vector Borne Disease Control Programme, Dte DGHS, Ministry of Health Services, Govt. of India, Delhi

Print-ISSN: 0976-0245-Electronic-ISSN: 0976-5506, Frequency: Quarterly (Four issues per volume)

Indian Journal of Public Health Research & Development is a double blind peer reviewed international journal. It deals with all aspects of Public Health including Community Medicine, Public Health, Epidemiology, Occupational Health, Environmental Hazards, Clinical Research, and Public Health Laws and covers all medical specialties concerned with research and development for the masses. The journal strongly encourages reports of research carried out within Indian continent and South East Asia. The journal has been assigned International Standards Serial Number (ISSN) and is indexed with Index Copernicus (Poland). It is also brought to notice that the journal is being covered by many international databases. The journal is now part of DST, CSIR, and UGC consortia.

Website: www.ijphrd.com

©All right reserved. The views and opinions expressed are of the authors and not of the Indian Journal of Public Health Research & Development. The journal does not guarantee directly or indirectly the quality or efficacy of any product or service featured in the advertisement which is purely commercial.

Editor

Dr. R.K. Sharma
Institute of Medico-legal Publications
4th Floor, Statesman House Building, Barakhamba Road, Connaught Place, New Delhi-110 001

Printed, published and owned by

Dr. R.K. Sharma
Institute of Medico-legal Publications
4th Floor, Statesman House Building, Barakhamba Road, Connaught Place, New Delhi-110 001

Published at

Institute of Medico-legal Publications
4th Floor, Statesman House Building, Barakhamba Road, Connaught Place, New Delhi-110 001
1. Distribution of Social Determinants in People with Disability; A Community based Study from Rural South Kerala
 Sandhya GI, Anitha Abraham, Ramla Beegam

2. A Descriptive Study to Assess the Adjustment Problems Faced by 1st Year B.Sc. (N) Students
 Sunidhi, Nageshwar V, Shalini Joshi

3. Gaming Addiction Situation among Elementary School Students in Bangkok, Thailand
 Nipaporn Apisitwasana, Usaneya Perngparn, Linda B Cottler

4. A Prospective, Randomized Trial on Comparative Study of Intrarticular Hyaluronic Acid with Corticosteroid Injections for the Treatment of Osteoarthritis of the Knee Joint
 Rai Siddharth, Uppal Harleen

5. The Relationship between Perceived Individual-Couple Sacrificial Behavior and Quality of Marital Relationship in Married Employees
 Parivash Azizpoor, Sahar Safarzadeh

6. A Study of Burden of Care on Key Relatives of Children and Adolescents with Mental Retardation
 Tarun Pal, Vivek Agarwal, Amit Arya, Pawan Kumar Gupta, Pooja Mahour

7. Epidemiological Profile of H1N1 Cases in District Amritsar in Year 2015
 S L Mahajan, P Devgun, Des Raj, K P Gill, A P S Brar

 A R Parveen Gani, Josephine Priya K, Selvam Paramasivam

9. Effectiveness of Video Assisted Teaching Programme on Knowledge Regarding Practice of Body Mechanics among Staff Nurses in Selected Hospitals, Moradabad
 Anugrah Thomas, K Chithra, Nageshwar V

10. Effectiveness of Group Assertiveness Training in Social Anxiety and Meta-cognitive Beliefs of Students Living in the Dormitory
 Fatemeh Faghihi, Kourosh Goodarzi

11. Implication of the Rule of Halves for Hypertension in an Urban Area, Belagavi
 Abhishek Prayag, Shrinivas K Patil, Sanjay Kambar

12. A Study of Non Alcoholic Fatty Liver Disease (NAFLD) Diagnosed on Ultrasound with Association of Lipid Profile in Western Uttar Pradesh
 Pankaj Kumar, Yatish, Hemant Kumar Singh, Ankita Sharma, Vikash Kumar, Vinay Sindhu, Amit Saxena

13. Assessing the Burden of Bronchial Asthma in Rural Adult Population of Bangalore
 S P Prashanth Kumar, B G Parasuramanlu, N Huliraj, Gangaboraih, N R Ramesh Masthi, C R Srinivas Babu

 Khurshid Parveen, Saurabh Mishra, Neha Mishra
15. A Clinical and Epidemiological Study to Access Role of Needle Aspiration for Pneumothorax in Resource Limited Settings and Compare which Side is More Propense for Developing Spontaneous Pneumothorax
 Chaudhary, E V Sikri, V Garg, S Kumar, P Aggarwal, A Sharma

16. Awareness Regarding Ebola Virus Disease among Health Care Professionals in Tertiary Hospitals
 Avinash Kumar, B Unnikrishnan, Prasanna Mithra, Vaman Kulkarni, Ramesh Holla, Samantha Valeni Nazareth, Vaibhav Bhat

17. Dental Caries Experience and Restorative Needs among Young, Middle-aged and Elderly
 Neeta Shetty, Kundabala M, Suprabha B S, Ramya Shenoy

18. Multidetector CT Measurement of Maxillary Sinus Volume Using Dedicated Software
 to Determine Gender Difference in Normal Population
 Gupta Vishal, Agarwal Neema, Baruah BP, Gupta V, Gupta R

19. Psychological Distress among Family Caregivers of Cancer Patient
 Himanshu Massey, Rajesh Kumar Sharma, Jasvinder Kaur, Pawan Singh Rawat

20. Prevalence of Comorbid Medical illness in Depression
 Singh Krishna K, Kumar Kunal, Hembram Mahesh, Chandra Prakash, Singh P K

21. A Prospective Study Comparing the Outcome of Dynamic Hip Screw and Proximal Femoral
 Nail in the Treatment of Intertrochanteric Fractures of Femur
 Avneet Singh Shishodia, Vimal Kumar Dakour, Rajesh Bhatia

22. Study of HA-MRSA and CA-MRSA Isolated from Clinical Cases in a Tertiary Care Hospital
 J Bhavana, N K Rama

23. Assessment of Anxiety among Hospitalized Children
 Aakanksha Baijai, B S Ilayaraja, NV Muninarayanappa, Nageshwar V

24. Knowledge of Danger Signs of Pregnancy, Labour and Post Partum Period among Mothers in Rural Pondicherry
 Abhijit V Boratne, Shib Sekhar Datta, Yogesh A Bahrupi, Murugavangini E, Hema Priya, Rajkumar Patil

25. Profile of Typhoid Fever in Children from a Tertiary Care Hospital in Bhubaneswar, Odisha
 Natabar Swain, Reshmi Mishra, Chinmay Kr Behera, Surya Narayan Mishra

26. Burden of HCV- TB Coinfection among Patients of Tuberculosis – A Hospital based Study
 SK Bansal, GC Ahir, HS Bains

27. A Prospective Study of Efficacy of Titanium Elastic Nailing System (TENS) in Pediatric Femoral Shaft Fractures
 Vimal Kumar Dakour, Avneet Singh Shishodia, Rajesh Bhatia

 Choudhary Madan Gopal, Manish Jain

29. Evaluation of Waste Water Treatment Toward Physical, Chemical, and Biology Parameters
 in WWTP Hasan Basry Banjarnas, Indonesia 2016
 Husaini, Muhammad Khairyandi Rosyadi, Nita Puji Sianti, Ratna Setyaningrum, Fauzie Rahman

30. A Timeframe Study on Delay in Seeking Care During Delivery on a Group Representative of Mortality Cases
 Debjani Sengupta, Debajyoti Tapadar

31. A Health Seeking Behavior of the Women of Urban Slums of Puducherry Regarding
 Reproductive Tract Infections
 Arjit Kumar
32. Factors Influencing In-hospital Mortality in Acute Stroke Patients in a Tertiary Care Hospital in Kolkata, India
 Payel Talukdar, Indranil Ray, Malay Makhal, Himadri Nirjhar Chakrabarty, Piyas Gargari

33. Responding to the Ebola Virus Disease at Point of Entry: Experience from Mumbai - India
 Amitabha Dan, Achhelal Pasi, Mohammed Jalaludddeen, Sujeet Kumar Singh

34. Legal Regime of Bio Medical Waste and Environmental Protection
 Hiranmaya Nanda, Jayadev Pati

35. Assessment of Immunization Status in Children of 12-23 Months in Rural Field Practice
 Amrita N Shamanewadi

 M Bhuvana, S Vasantha

37. Air Pollution and Atherosclerosis
 Zulkifli Amin, Hilman Zulkifli Amin, MD, Lukman Zulkifli Amin, Fia Afifah Mutiksa

38. Correlation between H Pylori Infection, Clinicopathological Features and Related Digestive Disorders among 5172 Symptomatic Patients
 H Amrani Hassani Joutei, S Zamati, W Mahfoud, I Sadaoui, N Marchoudi, H Benomar

39. Dental Erosion Caused by Carbonated Sports Drinks: A Review
 Vinod Rakesh Jathanna, Shreya Hegde, Manuel S Thomas

40. A Study to Assess the Effectiveness of Ginger Remedy in Reduction of Dysmenorrhea among Adolescent Girls
 Prachi Singh, Nageshwar V, Krishnaveni R

41. Impact of Foot Reflexology Massage on the Patients' Physiological Indicators without Trauma with Loss of Consciousness in the Intensive Care Unit
 Sara Sheikh, Fariba Yaghoubinia, Ali Navidian

42. Prevalence of Anaemia and its Association with Demographic Factors among Adolescent Girls in Coimbatore District, India
 Selvarani P

43. A Cross-sectional Study on Perception Regarding Dengue Fever among Mid-adolescent Boys in South India
 Keerti S Jogdand, Pravin N Yerpude

44. Quit Tobacco: Are We Prepared?
 Nandita Shenoy, Soham Chatterjee, Junaid Ahmed, Ashok Shenoy, Mukta Chowta, Laxmish Mallya, Srikant N

45. Promising Herbals as Adjunctive to Standard Antituberculosis Therapy
 Zulkifli Amin, Sari Purnama Hidayat

46. To Study the Clinical Profile, Microbiology, Radiological and Therapeutic Aspects of Empyema Thoracis in Children
 Kapil Bhalla, Sanjiv Nanda, Alok Khanna, Jitender Jakhar, Shuchi Mehra, Manish Swami, Raman Wadhera

47. Knowledge of Higher Secondary School Students Regarding Reproductive Health
 Rajnish Borkar, C G Patil, Swapnatai Meshram

48. Laparoscopic Cholecystectomy in Acute Cholecystitis: A Pilot Study
 Chandra Prakash, Sohan Pal Singh, Usha Singh, Atul Vats
49. Prevalence, Risk Factors and Clinical Spectrum of Migraine among Medical Students in India 240
 Vaddadi Suresh, Navya Manasa, NSR Gupta

 Narendra Goel, Seema Goel, Parveen Ahmed, Zulfia Khan

51. The Key Challenges and Recommendations for Healthy Cities Implementation of .. 252
 North Kolaka, Indonesia
 Sukri Palutturi, Andi Zulkifli, Aminuddin Syam, Stang, Muliana, Alias, Hamzah

52. An Interaction Effect of Emotional Intelligence & Gender on Student’s Adaptation to 258
 College Environment
 Amrita Mohanty, Ganesh Prasad Das

53. Examining the Prevalence of Depression and Anxiety in Patients with Chronic Headache 263
 Visiting Neurology Clinic of Imam Ali Hospital in Zahedan in 2015
 Hamed Amirifard, Hanie Dahmardeh, Alireza Shamsi, Alireza Ansarimoghad, Salma Yazdandoust Ghminogadam

54. SEM Modeling Approach for Studying the Social Impact of Whatsapp Usage .. 268
 Prabha Kiran, S Vasantha, Abhishek Srivastava

55. Benefit of the Application of New ARDS Criteria (Berlin) Compared to Old Criteria 273
 (AECC) in a Tertiary Hospital in a Developing Country
 Zulkifli Amin, Astrid Priscilla Amanda, Chrispian O Mamudi

56. Determine the Ideal Time for Weaning of Patients from Mechanical Ventilation: 279
 A Literature Review
 Shahla Soleymani, Sara Sheikh, Elham Ali Ahmadi, Mohamad Ali Hasan Zade

57. Effectiveness of Attachment – based Therapy in Sleep Quality and Aggression in Obese Elementary-School Female Students .. 285
 Mehrana Askary, Parviz Asgary, Zahra Dasht Bozorgi

58. The Key Factors of Employer Brand an Empirical Analysis with Special Reference to IT Industry 290
 S Vasantha, Kanchana Vinoth

59. Knowledge, Attitude, and Practice of Nurses Concerning Hospital-Acquired Infection 296
 (HAI) Control in Iran: A Literature Review
 Forough Forghani, Vahideh Poyesh, Sudabeh Ahmadidaehsima, Zahra Sepehri

60. Study of Dermatoglyphics in Children Age 5-18 Years with Bronchial Asthma .. 300
 Navaney Hiru, Pankaj Kumar

61. The Effect of Reiki Energy Healing on CABG Postoperative Chest Pain Caused by 305
 Coughing and Deep Breathing
 Elham Shaybak, Abdolghani Abdollahimohammad, Mozgan Rahnama, Nosratollah Masinaeinezhad, Changiz Azadi-Ahmadabadi, Mohammadreza Firouzkohi

62. Helicobacter Pylori Diagnosis in 56 Gastric Biopsies: A Cost-effectiveness Analysis of 311
 Different Techniques
 H Amrani Hassani Joatei, W Mahfoud, I Sadaoui, N Rhallabi, H Benomar

63. Organisational Culture and its Impact on Employee Performance ... 315
 (A Study with Reference to IT Sector Chennai)
 R Durgadevi, S Vasantha

64. Effectiveness of an Awareness Programme on Knowledge of Disaster Preparedness in Low 321
 Lying Flood Prone Areas of Udupi
 Rynel Desma Quadras, Shashidhara YN, Shalini G Nayak
65. Cross Cultural Competences of Indian it Expatriates Influencing Social Cultural Adaptation in USA : P S Rekha, S Vasantha

66. The Effects of Health Education Toward HIV/AIDS Knowledge and Attitude on Banjarbaru Midwife : Husaini, Roselina Panghiyangani, Maman Saputra

67. Assessment of Secondary Sexual Development of Adolescent School Boys of Aligarh : Mohammad Atif, M Athar Ansari, Zulfiq Khan, Anees Ahmad

68. The Effect of Presence of Emergency Medicine Specialists on DTN Mean Time Patients with ST- Segment Elevation : Mohammad Sedaghat, Hanie Dahmardeh

69. A Review of Anticancer Herbs in Iranian Traditional Medicine : Sudabeh Ahmadidaehsima, Zahra Sepehri, Forough Forghani

70. A Study of Breast Feeding Practices in Rural Areas of Ballari Taluka, Karanataka : Durgappa H, Bellara Raghavendra

71. Assessment of Thermal Comfort in Hospital Wards of Kermanshah, Iran, based on the Standards : Meghdad Pirsaheb, Younes Sohrabi, Hamed Yarmohammadi

72. Studying the Frequency of Needle Stick Injuries Suffered While Providing Medical Services in a Hospital in Kermanshah, Iran : Meghdad Pirsaheb, Younes Sohrabi, Hamed Yarmohammadi

74. Maxillofacial Fractures in Patients Treated at Two Hospitals of Kermanshah City, Iran : Nafiseh Nikkerdar, Bahram Azizi, Amin Golshah, Mohammadreza Asadi

75. Evaluating the Relationship between Clinical Competence and Clinical Self-efficacy of Nursing Students in Kermanshah University of Medical Sciences : Yahya Safari, Nasrin Yoosefpour

76. Learning Styles in University Education (Systematic Review) : Shoeb Rahimi, Younes Sohrabi, Amir Hossein Nafez, Maryam Dabirian

77. Effect of Drying and Cooking Processing on Heavy Metals (Lead, Zinc and Cadmium) Levels of Vegetables : Ehsan Sadeghi, Armaghan Haghghitalah, Mostafa Karami, Somayeh Bohlouli, Somayeh Bakhshi, Hooshmand Sharafi, Soolmaz Mahmoodi Yeganeh

78. The Feasibility of Hospital Information System for the Establishment of Evidence based Medicine in the Affiliated Hospitals in Kermanshah University of Medical Sciences : Yahya Safari, Ameneh Safari, Zohreh Abasifard

Benefit of the Application of New ARDS Criteria (Berlin) Compared to Old Criteria (AECC) in a Tertiary Hospital in a Developing Country

Zulkifli Amin\(^1\), Astrid Priscilla Amanda\(^1\), Chrispian O Mamudi\(^1\)

\(^1\)Division of Respirology and Critical Illness, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia

ABSTRACT

Background: There have been several ARDS definitions throughout years, including those by Laennec, Ausbagh, the Lung Injury score (LIS), and the American-European Consensus Conference (AECC) criteria in 1821, 1967, 1998, and 1994, respectively. In 2012, a new diagnostic criteria, the Berlin criteria, was published.

Objective: To identify benefits of implementing the Berlin criteria as compared to the AECC criteria in a tertiary hospital of a developing country

Method: This is a prospective, observational study conducted at a tertiary hospital in Jakarta from October 2015 to June 2016. Data was collected from ARDS patients in the emergency room, ICU, resuscitation room, and in-patient ward.

Result: There were 104 ARDS patients according to the Berlin criteria, while only 75 patients were diagnosed as ARDS according to the AECC criteria. Both criteria showed that majority of the patients were male; the APACHE score was <20; the Charlson comorbidity index 2; and sepsis was the most common etiology. Seven-day survival was higher in the Berlin criteria (51.9%) than in the AECC criteria (48%).

Conclusion: Application of the Berlin criteria in developing countries is more beneficial compared to the AECC criteria as a larger number of ARDS patients can be diagnosed, earlier diagnosis leads to earlier management thus increasing the survival rate, and excluding the use of a pulmonary artery catheter to measure the pulmonary wedge pressure

Keywords: Berlin, AECC, criteria, developing country.

INTRODUCTION

Laennec in 1821 described a condition characterized by pulmonary edema that occurred with no evidence of heart failure. Some terms were used to described the condition, such as double pneumonia, lung shock, and post traumatic lung.\(^1\) Asbaugh et al, in 1967 was the first to coin the term Acute Respiratory Distress Syndrome (ARDS). This condition was based on 5 clinical features including an associated risk factor, severe hypoxemia despite adequate oxygen supplementation, bilateral infiltrates on chest x-ray, decreased lung compliance, and no evidence of congestive heart failure.\(^2\) In 1998, another ARDS diagnostic criteria was made, the Lung Injury Score (LIS). There were 4 aspects of the respiratory injury, including positive end expiratory pressure (PEEP), PaO\(_2\)/FiO\(_2\) ratio, lung compliance, and infiltrates on chest X-ray. Each item was assigned a score from 1 to 4 points. The patient would be diagnosed with ARDS if the total score was more than 2.5.\(^3\)
The definition of Acute Respiratory Distress Syndrome (ARDS) according to the American-European Consensus (AECC) in 1994 was acute hypoxemia (PaO$_2$/FiO$_2$ ratio of 200 mmHg) with bilateral infiltrates on chest X-ray, without evidence of left atrial hypertension. On the other hand, Acute Lung Injury (ALI), which has a similar clinical criteria similar to ARDS, has a lower degree of hypoxemia compared to ARDS (PaO$_2$/FiO$_2$ ratio of 300 mmHg).

In 2012, a panel of experts from The European Society of Intensive Care Medicine, the American Thoracic Society, and the Society of Critical Care Medicine revised the ARDS definition. The panel agreed on the earlier concept of ARDS and further detailed the understanding of acute onset; the classification of decreased oxygenation; the minimum PEEP value; exclusion of hydrostatic pulmonary edema; and the new radiologic criterion. Further, a new classification of ARDS; mild, moderate, and severe ARDS was determined. The objective of this study was to highlight the benefits of implementing the Berlin criteria, as compared to the AECC criteria in the tertiary hospitals of developing countries.

MATERIALS AND METHOD

This was a prospective, observational study conducted in the emergency room, intensive care unit (ICU), high care unit (HCU), resuscitation room, and in-patient wards of a tertiary hospital in Jakarta from October 2015 to June 2016. The inclusion criteria were as follows: (1) diagnosed as ARDS based on the Berlin criteria and AECC criteria, (2) age 18 years and older. The exclusion criterion was patients discharged within less than 7 days since diagnosed as ARDS. This study has been reviewed and approved by The Health Research Ethics Committee of the Faculty of Medicine Universitas Indonesia and Dr. Cipto Mangunkusumo National General Hospital.

Variables and Measurement

The demographic characteristics included age and gender. The clinical characteristics reported include etiology of ARDS; ARDS classification according to the Berlin criteria and the AECC criteria; comorbidity; Charlson comorbidity index (CCI); Acute Physiology and Chronic Health Evaluation (APACHE) II score; ventilator utilization; and outcome of the patient in the following 7 days (dead or survived).

In this study, two diagnostic criteria (the Berlin criteria and AECC criteria) were applied. The specifics of each diagnostic criteria can be seen in Table 1.

<table>
<thead>
<tr>
<th>Berlin Criteria</th>
<th>AECC Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild ARDS: PaO$_2$/FiO$_2$ ratio ≤300 and >200</td>
<td>PaO$_2$/FiO$_2$ ratio of 200 mmHg</td>
</tr>
<tr>
<td>Moderate ARDS: PaO$_2$/FiO$_2$ ratio 100-200</td>
<td>Bilateral infiltrates in chest X-ray</td>
</tr>
<tr>
<td>Severe ARDS: PaO$_2$/FiO$_2$ ratio <100</td>
<td>No evidence of left atrial hypertension</td>
</tr>
</tbody>
</table>

The etiology of ARDS was categorized into sepsis and non-sepsis. Comorbidity was defined by the presence of a documented clinical diagnosis at the end of hospitalization. The diagnosis included were diabetes mellitus, chronic kidney disease (CKD), systematous lupus erythematos (SLE), liver cirrhosis, cerebrovascular disease (CVD), cancer, acquired immune deficiency syndrome (AIDS), and kidney transplant recipient.

The CCI is a method of measuring the severity of a patient’s co-morbidities. Each comorbidity is given a score; 1 point for myocardial infarction, congestive heart failure, peripheral vascular disease, dementia, cerebrovascular disease, chronic lung disease, connective tissue disease, gastrointestinal ulcer, mild liver disease, diabetes mellitus; 2 points for hemiplegia, moderate to severe kidney disease, diabetes with end organ damage, any tumor, leukemia, lymphoma; 3 points for moderate or severe liver disease; 6 points for autoimmune deficiency syndrome, metastatic solid tumor. The points are totaled, and then categorized into >2 and 2.

The APACHE II score is a measurement of disease severity. It is used to assess the risk of in-hospital mortality. This score is calculated within the first 24 hours of ARDS, and it is categorized into <20 and 20. Ventilator utilization is the use of a ventilator within the first 48 hours following ARDS diagnosis. Outcome of the patient is their condition after 7 days of hospitalisation, dead or survived.

Statistical Analysis

Analysis was conducted using the SPSS software version 20.0. For qualitative variables, a descriptive
analysis is presented as frequencies (percentage). Frequency of the quantitative variables were calculated and are presented as mean±SD. If the data was not normally distributed, the data is presented as median (interquartile range/IQR).

RESULTS

There were 104 ARDS patients based on the Berlin criteria and 75 patients according to the AECC criteria. The demographic and clinical characteristic of the patients are listed in Table 2 and 3.

Table 2. Demographic Characteristic

<table>
<thead>
<tr>
<th>Variables</th>
<th>Berlin Criteria (n: 104)</th>
<th>AECC Criteria (n:75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean±SD</td>
<td>53.06 ± 17.103</td>
<td>52.92 ±17.584</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 52 (50%)</td>
<td>Male 38 (50,7%)</td>
</tr>
<tr>
<td></td>
<td>Female 52 (50%)</td>
<td>Female 37 (49,3%)</td>
</tr>
</tbody>
</table>

Table 3. Clinical Characteristic

<table>
<thead>
<tr>
<th>Variables</th>
<th>Berlin Criteria (n: 104)</th>
<th>AECC Criteria (n:75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification of ARDS</td>
<td>Severe 26 (25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate 49 (47,1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mild 29 (27,9%)</td>
<td></td>
</tr>
<tr>
<td>Etiology of ARDS</td>
<td>Non sepsis 5 (4,8%)</td>
<td>Non sepsis 5 (6,7%)</td>
</tr>
<tr>
<td></td>
<td>Sepsis 99 (95,2%)</td>
<td>Sepsis 70 (93,3%)</td>
</tr>
<tr>
<td>APACHE II score</td>
<td><20: 67 (64,4%)</td>
<td><20: 47 (62,7%)</td>
</tr>
<tr>
<td></td>
<td>20: 37 (35,6%)</td>
<td>20: 28 (37,3%)</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>26 (25%)</td>
<td>18 (24%)</td>
</tr>
<tr>
<td>SLE</td>
<td>3 (2,9%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>CKD</td>
<td>15 (14,4%)</td>
<td>12 (16%)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>2 (1,9%)</td>
<td>1 (1,3%)</td>
</tr>
<tr>
<td>Cancer</td>
<td>34 (32,7%)</td>
<td>22 (29,3%)</td>
</tr>
<tr>
<td>CVD</td>
<td>14 (13,5%)</td>
<td>11 (14,7%)</td>
</tr>
<tr>
<td>AIDS</td>
<td>3 (2,9%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Kidney transplant recipient</td>
<td>(1%)</td>
<td>1 (1,3%)</td>
</tr>
<tr>
<td>CCI</td>
<td>>2: 28 (26,9%)</td>
<td>>2: 23 (30,7%)</td>
</tr>
<tr>
<td></td>
<td>2: 76 (73,1%)</td>
<td>2: 52 (69,3%)</td>
</tr>
<tr>
<td>Ventilator</td>
<td>Yes 45 (43,3%)</td>
<td>Yes 32 (42,7%)</td>
</tr>
<tr>
<td>Outcome</td>
<td>Survived 54 (51,9%)</td>
<td>Survived 36 (48%)</td>
</tr>
<tr>
<td></td>
<td>Dead: 50 (48,1%)</td>
<td>Dead: 39 (52%)</td>
</tr>
</tbody>
</table>

The mean age of patients according to the Berlin criteria is 53.06 ± 17.103, while in the AECC criteria is 52.92 ± 17.584. Majority of the patients in both groups were male. Based on the Berlin criteria, most patients were classified as moderate ARDS, 49 (47.1%). The primary etiology of ARDS in the Berlin criteria and the AECC criteria was sepsis consisting of 99 patients (95.2%) and 70 patients (93.3%), respectively.

In both criteria, majority of patients had a Charlson comorbidity index 2, 76 patients according to the Berlin criteria (73,1%) and 52 according to the AECC criteria (69,3%). Further, an APACHE II score of <20 was most common among the participants, 67 according to the
Berlin criteria (64.4%) and 47 according to the AECC criteria (62.7%). Patient co-morbidities include diabetes mellitus, SLE, CKD, cirrhosis, cancer, CVD, AIDS, and kidney transplant recipients. Most of the patients were not ventilated. Patient survival as based on the Berlin criteria was 54 patients (51.9%), while patient survival according to the AECC criteria was 36 (48%).

DISCUSSION

There were 104 ARDS patients according to the Berlin criteria, while only 75 patients was diagnosed as ARDS according to the AECC criteria. This result may be attributed to the wider $\text{PaO}_2/\text{FiO}_2$ ratio range in the Berlin Criteria as compared to the AECC criteria. Thus, the advantage of the Berlin criteria in encompassing more ARDS patients as compared to previous criteria; and its ability to detect ARDS patient earlier are highlighted.

The mean age of patients diagnosed by the Berlin criteria and AECC criteria were similar (53.06 ± 17.103 and 52.92 ± 17.584, respectively). A study by Rubenfeld et al, showed that the incidence of ARDS increased with age. For patients age 15-19 years, the incidence was 16 per 100,000 person/years and the rate increased to 306 per 100,000 for patients age 75-84 years.

Males were predominant in both criteria. A study by Nadia et al, showed similar results, that males were predominant among those diagnosed with ARDS. However, a different result was showed by Daithi et al. This study reported that females are more likely to develop ARDS than males following critical injury, but the mortality rate is similar in both genders. The relationship between immune-depressing testosterone and pro-inflammatory estrogens are thought to be important factors, regardless of gender.

Sepsis is a major etiology of ARDS in both criteria. ARDS usually develops in a condition that induces systemic inflammatory response, such as sepsis, pneumonia, major trauma, multiple transfusions, aspiration, or acute pancreatitis. However, among these factors, sepsis is the most common cause of ARDS.

The APACHE II score was <20 in both criteria. Saleh et al, in their study concluded that performance of the APACHE II/III score was superior to other scores with regard to mortality prediction. Chawla et al, stated that the APACHE score is one of the factors that contributes to mortality other than shock, low $\text{PaO}_2/\text{FiO}_2$, and ARDS severity. E.Sealey et al, concluded that a higher APACHE II score was associated with increased mortality rate.

Majority of the patients in this study had a Charlson comorbidity index 2. Han-Yi Wang et al, stated that a high CCI index (2) in the emergency department revisiting patients showed higher admission rate, longer hospital stay, poorer prognosis, and high in-hospital mortality. Another study conducted by Ando et al, stated that patients with CCI 4 had poor prognosis.

The list of co-morbidities found in this study were diabetes mellitus, SLE, CKD, cirrhosis, cancer, CVD, AIDS, and kidney transplant recipients. The presence of co-morbidities (pulmonary or non-pulmonary) is one of the risk factor that contributes to mortality in ARDS patients. In addition, factors such as increasing age, worsening multi-organ dysfunction, higher APACHE II score, and acidosis contribute to mortality as well. It should be noted that this study was conducted in a tertiary hospital which accepts patients referred from another hospitals in Jakarta and other provinces of the country. Thus, the patients tend to present with more complicated diseases. Further, a large percentage of the patients have multiple co-morbidities that worsen their condition.

In both criteria, most of patients did not receive ventilation. In the Berlin criteria group, there were 59 patients (56.7%) who were not ventilated with 17 patients classified as severe ARDS. Ideally, these patients should be ventilated, but they were not due to the limited number of ventilators available at the hospital. In fact, mechanical ventilation is important for ARDS patients. Ventilation works by two mechanisms, first it allows precise titration of FiO_2 in the gas delivered, and secondly, it provides sufficient pressure to open some of the collapsed lung during the inspiratory phase. It is hoped that this result may provide sufficient support so hospitals can increase the number of ventilators as ventilators are of prime importance in ARDS treatment.

This study compared the Berlin criteria to the AECC criteria. In comparison, there have been several studies that compared the various ARDS diagnostic criteria. Goh et al (1998) compared the Lung Injury Score (LIS) with the AECC criteria. The results show that both criteria identified a similar group of ARDS patients. Further, Niall et al (2005) compared the diagnostic accuracy of
three ARDS diagnostic criteria: AECC criteria, LIS, and Delphi definition. It was concluded that ARDS was under-diagnosed by the clinicians.\(^{20}\)

In this study, we compared two ARDS diagnostic criteria according to patient survival. Patient survival was higher in the Berlin criteria (51.9\%) than in the AECC criteria (48\%). This may be attributed to the larger number of patients that are encompassed by the Berlin criteria compared to the AECC criteria. However, it should be noted that patients with \(\text{PaO}_2/\text{FiO}_2\) ratio \(\leq 300\) are diagnosed with ARDS, thus, earlier ARDS diagnosis can be made compared to when the AECC criteria is used. Moreover, earlier diagnosis allows earlier management of the ARDS patient, hence it can increase the survival rate of ARDS patients in general.

Moreover, the Berlin criteria rules out the use of a pulmonary artery catheter to measure the pulmonary wedge pressure. A patient can be diagnosed with ARDS whether the respiratory failure is not caused by heart failure or fluid overload, as it is based on clinical judgement.\(^{4}\) This may be beneficial in developing countries that have limited resources and facilities.

There are several limitations in this study. Firstly, the number of patients included was small as the duration of this study was short. In addition, it used descriptive statistics alone to compare the Berlin criteria and the AECC criteria. Further study using a more comprehensive statistical analysis statistic may reveal a more detailed result.

CONCLUSION

The Berlin criteria allows a larger number of patients to be diagnosed with ARDS as compared to the AECC criteria. There were 104 ARDS patients according to the Berlin criteria, while only 75 patients were diagnosed with ARDS according to AECC criteria. Earlier ARDS diagnosis can be made based on the Berlin criteria due to the higher \(\text{PaO}_2/\text{FiO}_2\) ratio limits implemented as compared to the AECC criteria. Earlier diagnosis allows earlier management of the ARDS patient, Hence it can increase the survival rate of ARDS patients. Additionally, the Berlin criteria excludes the use of a pulmonary artery catheter to measure the pulmonary wedge pressure which is beneficial for developing countries with limited resources and facilities. However, further investigation is required to further detail the benefits of the Berlin criteria as compared to the AECC criteria.

Conflicts of Interest: None

Source of Funding: Self-funding.

REFERENCES

11. Heffernan DS, Dossett LA, Lightfoot MA, Fremont RD, Ware LB, Sawyer RG, et al. Gender and

