Improvement of linear distillation column control performance using fuzzy self-tuning PI controller

Cite as: AIP Conference Proceedings 2255, 030061 (2020); https://doi.org/10.1063/5.0014060
Published Online: 03 September 2020

Abdul Wahid, Shafira Anandita, Muhammad Fathi Fadlian, and Albert Harazaki Mendrofa
Improvement of Linear Distillation Column Control Performance Using Fuzzy Self-Tuning PI Controller

Abdul Wahid¹,a), Shafira Anandita¹, b), Muhammad Fathi Fadlian², c) , and Albert Harazaki Mendrofa², d)

¹Department of Chemical Engineering, University of Indonesia, Depok 16424, Indonesia
²Department of Electrical Engineering, University of Indonesia, Depok 16424, Indonesia

Corresponding author: wahid@che.ui.ac.id
shafira.anandita@ui.ac.id, shafiranndt@gmail.com
fadlianfathi00@gmail.com
albertmendrofa@gmail.com

Abstract. PI and PID controllers are usually found to provide poor performance for high-order, nonlinear processes, and multiple-input and multiple-output (MIMO) systems with strong loop interactions. One of the most common multivariable system found is the distillation column. In this study, a new structure of fuzzy self-tuning PI (fuzzy-PI) controller for distillation column is proposed. The values of K_p and K_i are initially tuned with Ziegler-Nichols closed loop method and are always updated based on the system’s condition. With the self-tuning structure, the fuzzy-PI controller improves the conventional PI controller in terms of the linear distillation column control performance. The controllers’ performance are tested by X_D and X_B set point change and X_F disturbance change.

INTRODUCTION

Multivariable systems are generally encountered in real industrial processes due to the complexity, resulting in an increased number of loop controls to maintain the quantity and quality of industrial productions. The industrial processes include petrochemical industry, oil and gas industry, refinery industry, cement industry, power plants, and etc. Recently, the development of science and technology generate many types of controllers, but the PI and PID controllers still have an important role in industrial processes due to the simple design and tuning methods [1-3]. However, these controllers provide poor performance for high-order, nonlinear processes [1-3], and multiple-input and multiple-output (MIMO) systems with strong loop interactions [4]. To overcome these problems, various tuning methods have been developed. The fuzzy logic control has proved its broad potential in industrial applications because of its good performance for controlling systems that could not be controlled satisfactorily by using PI and PID controllers [4]. With the addition of self-tuning to the fuzzy logic control, it advances the controller to overcome the aforementioned problems [4].

One of the most common multivariable system found in industrial processes is the distillation column. There are a lot of researches regarding the distillation column, including the areas of process synthesis, process dynamics, and process control. Various process control methods have been studied and applied to various distillation column systems. Mishra et al. [3] and Almeida and Coelho [4] then developed different structures of fuzzy self-tuning PID controllers. Mishra et al. [3] uses a Takagi-Sugeno (TSK) type inference engine to calculate the output signal of a fuzzy controller (formula based) for the PI/PD controller. The distillation column model used is a mathematical model of a binary distillation column that separates 1-propanol and ethanol. The initial parameters of the controller are tuned using genetic algorithm (GA). Meanwhile, Almeida and Coelho [4] uses a fuzzy gain scheduling method to calculate the output signal of fuzzy controller (rule based) for the PID controller. The distillation column model used is a 2 × 2 linearized Wood and Berry model that separates methanol and water. The initial parameters of the controller are tuned using Ziegler-Nichols method.

This paper proposes a new structure of fuzzy self-tuning PI (fuzzy-PI) controller for distillation column. The controller design is adapted from Si and Wang [5], where the fuzzy rules used are based on a medical robot that can approach the target quickly and stable. Based on the error (e) and error changing rate (ec or de/dt) input, the fuzzy controller calculates the values of ΔK_p and ΔK_i, so that the values of K_p and K_i in the PI controller are
always updated. Hence, the controller is adaptive towards various situations, including set point and disturbance changes. Meanwhile, the program routine structure is adapted from Yusivar and Wakao [6], where instead of using a default fuzzy logic and PI controller from MATLAB/Simulink, two C-MEX S-function blocks are used separately to input the program routine for the fuzzy and PI controller. The distillation column model used is a 2 × 2 linearized McAvoy and Weischedel model as shown in Marlin [7]. The initial parameters of the controller are tuned using Ziegler-Nichols closed loop method [8]. The simulation is done in MATLAB/Simulink software. The performance of both conventional PI and fuzzy-PI controller are evaluated and compared to see whether there is an improvement. The controllers’ performance are evaluated qualitatively based on overshoot and settling time and quantitatively based on integral absolute error (IAE) and integral square error (ISE). The fuzzy-PI controller is considered to have improved the linear distillation column control performance when it produces smaller overshoot, settling time, IAE, and ISE values than the conventional PI controller.

METHODOLOGY

1. **Distillation Column Model**

The distillation column model used in this simulation is a 2 × 2 linearized McAvoy and Weischedel model as shown in Marlin [7]. The scheme of the distillation column and the initial parameters used are described in detail in Marlin [7]. The model is based on a two-product distillation column with high purity separating a binary feed. The transfer function model is given by Eq. 1.

\[
\begin{bmatrix}
X_D \\
X_B
\end{bmatrix} = \begin{bmatrix}
0.0742e^{-3.34s} & -0.0667e^{-2.38s} \\
12s+1 & 15.5s+1 \\
0.1173e^{-3.38s} & -0.1253e^{-2.38s} \\
11.75s+1 & 10.25s+1
\end{bmatrix} \begin{bmatrix}
F_R \\
F_V
\end{bmatrix} + \begin{bmatrix}
0.7e^{-3.5s} \\
1.445s+1 \\
1.36e^{-3.3s} \\
12s+1
\end{bmatrix} \begin{bmatrix}
X_F
\end{bmatrix}
\]

(1)

According to Marlin [7], the controlled variables are distillate and bottom compositions (\(X_D\) and \(X_B\)), while the manipulated variables are reflux and reboiler flow rates (\(F_R\) and \(F_V\)). It is assumed that other variables such as pressure and level are controlled tightly. The disturbance is the feed composition (\(X_F\)) because it depends on upstream operations and is assumed not free to be adjusted. The distillate light key (\(X_D\)) is maintained at 0.98 mole fraction and the bottom light key (\(X_B\)) is maintained at 0.02 mole fraction.

2. **Conventional and Fuzzy Self-Tuning PI Controller**

The general expression of a conventional PI controller is given by Eq. 2.

\[
MV(t) = K_p e(t) + K_i \int_0^t e(t) dt
\]

(2)

where \(MV(t)\) is the PI controller output, \(K_p\) is the proportional constant, \(K_i\) is the integral constant, and \(e(t)\) is the error. The values of \(K_p\) and \(K_i\) used in the PI controller are tuned using the Ziegler-Nichols closed loop method [8].

The fuzzy self-tuning PI controller (fuzzy-PI) is a controller that takes the conventional PI controller structure as its base, where the parameters of the PI controller are first tuned with any conventional tuning methods, e.g. Ziegler-Nichols closed loop method [8], and then are automatically regulated by the fuzzy controller. The fuzzy controller structure used in the fuzzy-PI controller is the same as a fuzzy logic controller, which consists of a fuzzification interface, a knowledge base, an inference, and a defuzzification interface. Each component’s functions are described in detail in Zhang et al. [9] and Lee [10].

The block diagram of the proposed fuzzy-PI controller is shown in Fig. 1, which is adapted from Si and Wang [5]. Fig. 1 shows the input and output variables of each controller. For the fuzzy controller, the input variables are error (\(e\)) and error changing rate (\(de/dt\)), while the output variables are \(\Delta K_p\) and \(\Delta K_i\). For the PI controller, the input variables are error (\(e\)), \(\Delta K_p\), and \(\Delta K_i\), while the output variable is the actual output signal value (a manipulated variable value, as stated in Eq. 2) that will affect the process or system. The controller design is adapted from Si and Wang [5], which includes the fuzzy set, linguistic values, fuzzy rules, and the equations to calculate the new values of \(K_p\) and \(K_i\) in the PI controller.

FIGURE 1. Block diagram of the proposed fuzzy-PI controller.
The fuzzy set used in the fuzzy controller is a series of linguistic values, which are {NB, NM, NS, ZO, PS, PM, PB}. Each abbreviation represents “negative big”, “negative medium”, “negative small”, “zero”, “positive small”, “positive medium”, and “positive big” respectively. The input and output value ranges for each linguistic value are defined by Eq. 3-4. However, there is a modification from Si and Wang’s [5] design on the value ranges, where instead of using fixed value ranges, the value ranges can change based on the set point (SP) of the controlled variable. Selection of the appropriate error tolerance (ET) 1, 2, and 3 values are based on the system’s response and are done by trial and error. In this case, the error tolerance 1, 2, and 3 values used are 0.5, 0.3, and 0.05 respectively.

\[
\begin{align*}
PB &= ET_1 \times SP; \quad PM = ET_2 \times SP; \quad PS = ET_3 \times SP \\
ZO &= 0; \quad NS = -PS; \quad NM = -PM; \quad NB = -PB
\end{align*}
\]

After classifying the input values of \(e\) and \(ec\) into one of the linguistic values, the linguistic values for calculating the output values of \(\Delta K_p\) and \(\Delta K_i\) can be determined by a fuzzy rule that is defined based on a simple fuzzy logic, which is “if \(e\) is A and \(ec\) is B, then \(\Delta K_p\) is C and \(\Delta K_i\) is D”. Table 1(a) and 2(b) show the summarized fuzzy rules for \(\Delta K_p\) and \(\Delta K_i\) respectively.

TABLE 1. Fuzzy rules for (a) \(\Delta K_p\) and (b) \(\Delta K_i\).

<table>
<thead>
<tr>
<th>(ec)</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>ZO</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>PB</td>
<td>PB</td>
<td>PM</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>ZO</td>
</tr>
<tr>
<td>NM</td>
<td>PB</td>
<td>PB</td>
<td>PM</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
</tr>
<tr>
<td>NS</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>ZO</td>
<td>PM</td>
<td>PM</td>
<td>PM</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>PS</td>
<td>PS</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NS</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>PM</td>
<td>PS</td>
<td>ZO</td>
<td>NS</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NB</td>
</tr>
<tr>
<td>PB</td>
<td>ZO</td>
<td>ZO</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NB</td>
<td>NB</td>
</tr>
</tbody>
</table>

After determining the linguistic values for \(\Delta K_p\) and \(\Delta K_i\), the output values of \(\Delta K_p\) and \(\Delta K_i\) can be calculated by Eq. 5 and 6. This is another modification of Si and Wang’s [5] design on the output values of \(\Delta K_p\) and \(\Delta K_i\), where instead of directly using the linguistic values, the linguistic values must be divided by a re-scaling factor. The aim of using a re-scaling factor is avoid very rapid changes in the values of \(K_p\) and \(K_i\) used in the PI controller, which causes the system’s response to be unstable. Selection of the appropriate re-scaling factor is based on the system’s response and is done by trial and error. In this case, the re-scaling factor used is 5,500.

\[
\begin{align*}
\Delta K_p &= \Delta K_p' / \text{re-scaling factor} \\
\Delta K_i &= \Delta K_i' / \text{re-scaling factor}
\end{align*}
\]

After obtaining the scaled values of \(\Delta K_p\) and \(\Delta K_i\) from the fuzzy controller, the new values of \(K_p\) and \(K_i\) used in the PI controller can be calculated by Eq. 15 and 16.

\[
\begin{align*}
K_p &= K_p' + \Delta K_p \\
K_i &= K_i' + \Delta K_i
\end{align*}
\]

Eq. 7 and 8 show that the values of \(K_p\) and \(K_i\) used in the PI controller are continuously changing based on the output values of the fuzzy controller (\(\Delta K_p\) and \(\Delta K_i\)), while the output values of the fuzzy controller (\(\Delta K_p\) and \(\Delta K_i\)) are continuously changing based on the system’s condition (\(e\) and \(ec\)). Meanwhile, in a conventional PI controller, the values of \(K_p\) and \(K_i\) are constant and unaffected by the system’s condition. Hence, the fuzzy-PI controller is adaptive towards various situations, including set point and disturbance changes and gives it an advantage than the conventional PI controller.

FIGURE 2. Simulink model of the linear distillation column with fuzzy-PI controller.
The Simulink model of the linear distillation column with fuzzy-PI controller is shown at Fig. 2. There are two separate fuzzy-PI controllers for controlling X_D and X_B. Both X_D and X_B controllers have the same fuzzy-PI controller structure as mentioned previously.

3. Simulation Testing and Evaluation

Simulation testing is carried out by set point change test and disturbance rejection test.
1. Set point change test is done by two methods: (1) changing ±10% of the X_D set point to see the changes in both X_D and X_B and (2) changing ±10% of the X_B set point to see the changes in both X_D and X_B.
2. Disturbance rejection test is done by changing ±20% of the X_F value to see the changes in both X_D and X_B.

The controllers' performance will be evaluated qualitatively based on overshoot and settling time and quantitatively based on integral absolute error (IAE) and integral square error (ISE). The fuzzy-PI controller is considered to have improved the linear distillation column control performance when it produces smaller overshoot, settling time, IAE, and ISE values than the conventional PI controller.

RESULTS AND DISCUSSION

1. Set Point Change Test

Fig. 3 shows the comparison of the system’s response between conventional PI and fuzzy-PI controller due to ±10% X_D set point change towards X_D and X_B. Table 2 shows the comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±10% X_D set point change. Fig. 4 shows the comparison of the system’s response between conventional PI and fuzzy-PI controller due to ±10% X_B set point change towards X_D and X_B. Table 3 shows the comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±10% X_B set point change. Overall, for both set point change cases, the fuzzy-PI controller outperforms the conventional PI controller with smaller overshoot, settling time, IAE, and ISE values.

FIGURE 3. Comparison of the system’s response between conventional PI and fuzzy-PI controller due to ±10% X_D set point change towards (a) X_D, (b) X_B

TABLE 2. Comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±10% X_D set point change.

<table>
<thead>
<tr>
<th>Controller</th>
<th>X_D</th>
<th>X_B</th>
<th>X_D</th>
<th>X_B</th>
<th>X_D</th>
<th>X_B</th>
<th>X_D</th>
<th>X_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZN-PI</td>
<td>20.4820</td>
<td>41.1116</td>
<td>17.12</td>
<td>14.64%</td>
<td>6.2372</td>
<td>20.4129</td>
<td>15.68%</td>
<td>23.51%</td>
</tr>
<tr>
<td>Fuzzy-PI</td>
<td>16.9763</td>
<td>35.0946</td>
<td>17.12</td>
<td>14.64%</td>
<td>5.2590</td>
<td>15.6131</td>
<td>15.68%</td>
<td>23.51%</td>
</tr>
</tbody>
</table>
FIGURE 4. Comparison of the system’s response between PI and fuzzy-PI controller due to ±10% X_B set point change for (a) X_D, (b) X_B

TABLE 3. Comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±10% X_B set point change.

<table>
<thead>
<tr>
<th>Controller</th>
<th>IAE</th>
<th>% IAE Reduction</th>
<th>ISE</th>
<th>% ISE Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZN-PI</td>
<td>17.4540 X_D 35.3364 X_B</td>
<td>17.71% 11.07%</td>
<td>6.1193 X_D 20.0899 X_B</td>
<td>15.70% 23.40%</td>
</tr>
<tr>
<td>Fuzzy-PI</td>
<td>14.4410 X_D 31.4242 X_B</td>
<td>5.1587 X_D 15.3881 X_B</td>
<td>15.70% 23.40%</td>
<td></td>
</tr>
</tbody>
</table>

2. Disturbance Rejection Test

Fig. 5 shows the comparison of the system’s response between conventional PI and fuzzy-PI controller due to ±20% X_F (disturbance) change towards X_D and X_B. Table 4 shows the comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±20% X_F (disturbance) change. The results are similar to the set point change test, where the fuzzy-PI controller outperforms the conventional PI controller with smaller overshoot, settling time, IAE, and ISE values.

FIGURE 5. Comparison of the system’s response between conventional PI and fuzzy-PI controller due to ±20% X_F (disturbance) change for (a) X_D, (b) X_B

TABLE 4. Comparison of IAE and ISE values between conventional PI and fuzzy-PI controller due to ±20% X_F (disturbance) change.

<table>
<thead>
<tr>
<th>Controller</th>
<th>IAE</th>
<th>% IAE Reduction</th>
<th>ISE</th>
<th>% ISE Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZN-PI</td>
<td>17.5860 X_D 35.8540 X_B</td>
<td>17.73% 11.51%</td>
<td>6.1202 X_D 20.1039 X_B</td>
<td>15.71% 23.42%</td>
</tr>
<tr>
<td>Fuzzy-PI</td>
<td>14.4673 X_D 31.7264 X_B</td>
<td>5.1587 X_D 15.3957 X_B</td>
<td>15.71% 23.42%</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSION

A new structure of fuzzy self-tuning PI (fuzzy-PI) controller for distillation column has been proposed. The values of K_p and K_i used in the PI controller are continuously changing based on the output values of the fuzzy controller (ΔK_p and ΔK_i), while the output values of the fuzzy controller (ΔK_p and ΔK_i) are continuously changing based on the system’s condition (e and ec). Simulation testing is done by X_D and X_B set point change test and X_F disturbance rejection test. Results show that for all simulation tests, the fuzzy-PI controller outperforms the conventional PI controller with smaller overshoot, settling time, IAE, and ISE values.

In the present study, the error tolerance values and re-scaling factor used in the fuzzy controller are tuned by trial and error. Further works may be done to find the more appropriate values. Implementing the fuzzy-PI controller to a nonlinear or mathematical distillation column model can also be done to see whether the fuzzy-PI controller is able to handle nonlinear and MIMO system with strong loop interactions.

ACKNOWLEDGMENTS

The authors would like to express the gratitude to Universitas Indonesia which has funded this research through the scheme of Hibah Publikasi Internasional Terindeks untuk Tugas Akhir Mahasiswa (PITTA B) NKB-0691/UN2.R3.1/HKP.05.00/2019.

REFERENCES