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• Channel coding:
– Transforming signals to improve communications 

performance by increasing the robustness against 
channel impairments (noise, interference, fading, ..)

– Waveform coding: Transforming waveforms to 
better waveforms

– Structured sequences: Transforming data 
sequences into better sequences, having structured 
redundancy.

• “Better” in the sense of making the decision process less 
subject to errors.

What is channel coding?
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Error control techniques
• Automatic Repeat reQuest (ARQ)

– Full-duplex connection, error detection codes
– The receiver sends a feedback to the transmitter, saying that 

if any error is detected in the received packet or not (Not-
Acknowledgement (NACK) and Acknowledgement (ACK), 
respectively).

– The transmitter retransmits the previously sent packet if it 
receives NACK.

• Forward Error Correction (FEC)
– Simplex connection, error correction codes
– The receiver tries to correct some errors 

• Hybrid ARQ (ARQ+FEC)
– Full-duplex, error detection and correction codes
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Why using error correction coding?

– Error performance vs. bandwidth
– Power vs. bandwidth
– Data rate vs. bandwidth
– Capacity vs. bandwidth 

(dB) / 0NEb

BP

A
F

B

D

C

E Uncoded

Coded

Coding gain:
For a given bit-error probability, 
the reduction in the Eb/No that can be
realized through the use of code:

[dB][dB] [dB] 
c0u0



















N
E

N
EG bb



Slide 5

Channel models

• Discrete memory-less channels
– Discrete input, discrete output

• Binary Symmetric channels
– Binary input, binary output

• Gaussian channels
– Discrete input, continuous output
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Some definitions

• Binary field : 
– The set {0,1}, under modulo 2 binary addition and 

multiplication forms a field. 

– Binary field is also called Galois field, GF(2).
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Some definitions…
• Fields : 

– Let F be a set of objects on which two operations ‘+’ 
and ‘.’ are defined. 

– F is said to be a field if and only if
1. F forms a commutative group under + operation. The 

additive identity element is labeled “0”.

2. F-{0} forms a commutative group under . Operation. The 
multiplicative identity element is labeled “1”.

3. The operations “+” and “.” distribute:

FabbaFba  ,

FabbaFba  ,
)()()( cabacba 
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Some definitions…

• Vector space:
– Let V be a set of vectors and F a fields of elements 

called scalars. V forms a vector space over F if:
Commutative:

Distributive:

Associative:
VuvVv  aFa ,

vuvuvvv  aaababa )(   and   )(

FV  uvvuvu,

)()(,, vvv  babaVFba
vvVv  1  ,
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Linear block codes

• Linear block code (n,k)
– A set               with cardinality      is called a linear 

block code if, and only if, it is a subspace of the 
vector space     .

• Members of C are called code-words.
• The all-zero codeword is a codeword.
• Any linear combination of code-words is a codeword.

nV

nVC  k2

   nk VCV 
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Linear block codes – cont’d

nV
kV

C

Bases of C

mapping
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Linear block codes – cont’d

• The information bit stream is chopped into blocks of k bits. 
• Each block is encoded to a larger block of n bits.
• The coded bits are modulated and sent over channel.
• The reverse procedure is done at the receiver.

Data block
Channel
encoder Codeword

k bits n bits

rate Code   

bits  Redundant        

n
kR

n-k

c 
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Linear block codes – cont’d

• The Hamming weight of vector U, denoted by w(U),  
is the number of non-zero elements in U.

• The Hamming distance between two vectors U and 
V, is the number of elements in which they differ.  

• The minimum distance of a block code is 

)()( VUVU,  wd

)(min),(minmin iijiji
wdd UUU 


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Linear block codes – cont’d

• Error detection capability is given by

• Error correcting-capability t of a code, which is defined 
as the maximum number of guaranteed correctable 
errors per codeword, is





 


2

1mindt

1min  de
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Linear block codes – cont’d

• For memory less channels, the probability that 
the decoder commits an erroneous decoding is

– is the transition probability or bit error probability over 
channel.

• The decoded bit error probability is 
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Linear block codes – cont’d
• Discrete, memoryless, symmetric channel model

– Note that for coded systems, the coded bits are modulated and 
transmitted over channel. For example, for M-PSK modulation 
on AWGN channels (M>2):

where        is energy per coded bit, given by
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Linear block codes –cont’d

– A matrix G is constructed by taking as its rows the 
vectors on the basis,                
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Linear block codes – cont’d

• Encoding in (n,k) block code

– The rows of G, are linearly independent.
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Linear block codes – cont’d

• Example: Block code (6,3)
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Linear block codes – cont’d

• Systematic block code (n,k)
– For a systematic code, the first (or last) k elements in 

the codeword are information bits.
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Linear block codes – cont’d

• For any linear code we can find an matrix               
, which its rows are orthogonal to rows of     :

• H is called the parity check matrix and its rows 
are linearly independent.

• For systematic linear block codes:

nkn  )(H
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Linear block codes – cont’d

• Syndrome testing:
– S is syndrome of r, corresponding to the error pattern e.
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Linear block codes – cont’d

111010001
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• Hamming codes
– Hamming codes are a subclass of linear block codes and belong 

to the category of perfect codes.
– Hamming codes are expressed as a function of a single integer          

. 

– The columns of the parity-check matrix, H, consist of all non-zero 
binary m-tuples.

Hamming codes
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Hamming codes

• Example: Systematic Hamming code (7,4)
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Cyclic block codes

• Cyclic codes are a subclass of linear block 
codes.

• Encoding and syndrome calculation are 
easily performed using feedback shift-
registers.
– Hence, relatively long block codes can be 

implemented with a reasonable complexity.
• BCH and Reed-Solomon codes are cyclic 

codes. 
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Cyclic block codes

• A linear (n,k) code is called a Cyclic code if all 
cyclic shifts of a codeword are also a 
codeword.

– Example:
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Cyclic block codes

• Syndrome decoding for Cyclic codes:
– Received codeword in polynomial form is given by

– The syndrome is the reminder obtained by dividing the received 
polynomial by the generator polynomial. 

– With syndrome and Standard array, error is estimated.

• In Cyclic codes, the size of standard array is considerably reduced. 

)()()( XXX eUr Received 
codeword

Error 
pattern

)()()()( XXXX Sgqr  Syndrome
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Example of the block codes

8PSK

QPSK
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