JAKARTA INTERNAL MEDICINE IN DAILY PRACTICE (JIM DACE) 2018

Improving the Medical Competence from Evidence Based Medicine to Daily Practice in Internal Medicine
KATA PENGANTAR

Segala puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa yang berkat rahmat dan karunia-Nya, buku prosiding simposium "Jakarta Internal Medicine in Daily Practice" (JIM DACE) ini dapat selesai disusun.

Dengan semakin meningkatnya tuntutan dan tantangan peningkatan standar pelayanan kedokteran khususnya di bidang ilmu penyakit dalam diharapkan simposium "Jakarta Internal Medicine in Daily Practice" (JIM DACE) yang diselenggarakan oleh Perhimpunan Dokter Spesialis Penyakit Dalam Indonesia Cabang Jakarta Raya (PAPDI JAYA) mampu menjawab tantangan tersebut dengan menekankan pada pendalaman ilmu penyakit dalam dan penerapan ilmu tersebut pada prakteknya sehari-hari.

Buku prosiding ini tidak hanya menyampaikan materi ilmiah simposium tetapi juga materi workshop yang juga merupakan bagian dari kegiatan ilmiah "Jakarta Internal Medicine in Daily Practice" (JIM DACE) yang meliputi topik-topik dibidang ilmu penyakit dalam diantaranya Kardiologi, Pulmonologi, Gastroentero-Hepatologi, Penyakit Tropik Infeksi, Alergi-Imunologi, Hematologi Onkologi Medik, Reumatologi, Endokrin Metabolik dan Diabetes, dan Ginjal Hipertensi. Kami mengucapkan banyak terima kasih kepada para pembicara yang telah menyusun materinya dalam buku ini.

Sesuai dengan tema JIM DACE 2018 ini, "Improving the Medical Competence from Evidence Based Medicine to Daily Practice in Internal Medicine", kami berharap semoga materi dalam buku ini dapat memberikan panduan dan meningkatkan kualitas, dan peran dokter sebagai ujung tombak pelayanan kesehatan dan peran dokter spesialis sebagai pendukung utama dalam upaya deteksi dini dan follow up pasien dengan kasus-kasus penyakit dalam pada praktek sehari-hari di lapangan. Semoga buku ini bermanfaat bagi para Sejawat dalam upaya memberikan pelayanan terbaik kepada masyarakat.

Salam Sejawat
Jakarta, September 2018
Tim Editor
DAFTAR ISI

Kata Pengantar .. iii
Daftar Kontributor ... v
Daftar Isi .. ix

SIMPOSIUM

Intensification with BiAsp30 ... 1
 Benny Santosa
Penggunaan Insulin pada Penyandang DM Tipe 2 5
 Fatimah Eliana
Think Beyond Statin Monotherapy: Benefit of Adding
Ezetimibe to Statin in Clinical Setting: Management of
Dyslipidemia in Diabetic Patient as a Model 19
 Imam Subekti
Recent Update of Hypertension Management 26
 Suhardjono
Management of Acute Kidney Injury 40
 Aida Lydia
Peran Vitamin D pada Penyakit Autoimun 54
 Alvina Widhani
Pendekatan Suportif/Paliatif pasien kanker 69
 Hilman Tadjoedin
Hepatitis B Infection in Daily Practice 78
 Andri Sanityoso Sulaiman
Nucleoside Analogue Resistance in Hepatitis B Infection 90
 Irsan Hasan, Steven Zulkifly
Diagnosis Tatalaksana Gastroesophageal Reflux Disease
(GERD) dengan GERD Questione 96
 Ari Fahrial Syam
Penatalaksanaan Gastroesophageal Reflux Disease (GERD)
Masa Kini ... 101
 Tjahjadi Robert Tedjasaputra

Jakarta Internal Medicine in Daily Practice 2018 | vii
Tata Laksana Terkini Artritis Gout .. 115
Anna Ariane

Peran Dampak Psikologi Terhadap Disfungsi Seksual: Bukti
Klinis Hingga Praktek Sehari-hari .. 124
Rudi Putranto

WORKSHOP

Thyroid Gland: Basic Concept and Physiology 143
Tri Juli Edi Tarigan, Marsita Ayu Lestari

Penghambat Pompa Proton Tinjauan Komprehensif 148
Titos Ahimsa

Tatalaksana Eradikasi *Helicobacter pylori* 160
Ari Fahrial Syam

Stress related Mucosal Damage pada pasien kritis 168
Riki Tenggara

Sirosis Hati dan Diabetes Mellitus 175
Tjahjadi Robert Tedjasaputra, Shirly Elisa Tedjasaputra

POSTER

Non-fasting Low Density Lipoprotein Cholesterol
dalam Memperekski Penyakit Kardiovaskuler:
Laporan Kasus Berbasis Bukti .. 197
Dian Daniella, Cynthia Camelia

Gout Kronis pada Penyakit Ginjal Kronik Stadium Akhir:
Laporan Kasus ... 199
Novi Elis Khumaesa, Siti Amanda, Yassir

Laporan Kasus Leukostasis pada *Chronic Myeloid Leukemia* .. 201
Monica Raharjo, Femiko Morauli Natalya Sitohang

Ko-infeksi *Ascaris Lumbricoides* dan Cacing Tambang pada
Pasien Geriatri dengan Ulkus Gaster dan Anemia Gravis:
Diagnosis dengan Esofagagastroduodenoskop 203
Sheila Adiwinata, Randy Adiwinata, Willy Brodus Uwan

Defisiensi CD8 pada Pasien Dewasa, Suatu Laporan Kasus ... 205
Pramedi Dimas Prakoso, Evy Yunihastuti, Alvina Widhani
Laporan Kasus: Keberhasilan Terapi Antikoagulan pada Pasien Emboli Paru .. 207
Enry Sidauruk, Cynthia Kurniawan, Steven David Panggabean

Vaskulitis Sebagai Manifestasi Klinis Ekstrahepatal pada
Hepatitis B: Laporan Kasus .. 209
Taufan Rizki Sudjarwadi, Ika Fitriana

Sindrom Guillain-Barre pada Pasien dengan Diabetes
Melitus Tipe Dua: Laporan Kasus ... 210
Cynthia Kurniawan, Enry Sidauruk, Steven David Panggabean

Mikroadenoma Hipofisis dengan Gambaran Klinis Sindrom Marfan ... 212
Ervan Zuhri, Susie Setyowati

Hiperkoagulasi dan Kejadian Thrombosis pada Sindrom Nefrotik: Sebuah Serial Kasus ... 213
Feigan Yoshua Axello, Cynthia Kurniawan, Rebekka Napitupulu

Efektivitas Penggunaan Proton Pump Inhibitor (PPI)
Dibandingkan dengan Antagonis H2 Reseptor dan Agen Sitoprotektif untuk Pencegahan Gastrointestinal Injury
Akibat Aspirin Jangka Panjang: Laporan Kasus Berbasis Bukti ... 215
Wahyu Purnama, Gunawan Adhiguna, Rachmat Hamonangan
PERAN VITAMIN D PADA PENYAKIT AUTOIMUN

Alvina Widhani

Pendahuluan

Pengetahuan mengenai pentingnya vitamin D berkembang cepat. Defisiensi vitamin D dihubungkan dengan berbagai penyakit, antara lain penyakit Alzheimer, kanker, penyakit kardiovaskular, hipertensi, diabetes tipe II, sklerosis multipel, penyakit Parkinson, dan tuberkulosis.\(^1\) Beberapa dekade terakhir, diketahui bahwa peran vitamin D tidak hanya berhubungan dengan homeostasis kalsium dan kesehatan tulang. Salah satu efek ekstraskeletal yang penting yaitu pengaruhnya terhadap respons imun.\(^2\) Sel imun tidak hanya mengubah vitamin D inaktif menjadi bentuk aktif yaitu kalsitriol, melainkan juga mengekspresikan reseptor nuklear vitamin D yang memodulasi diferensiasi, aktivasi, dan proliferasi sel imun tersebut.\(^3\)

Vitamin D dapat menjadi imunosupresan selektif saat berikatan dengan reseptornya di sel imun. Sel T yang autoreaktiv bekerja ketika kadar atau aktivitas reseptor vitamin D insufisien.\(^4\) Status vitamin D dan polimorfisme genetik pada reseptornya berhubungan dengan insidens dan keparahan penyakit autoimun. Hal tersebut mengarahkan pada penelitian lebih lanjut untuk mengetahui peran suplementasi vitamin D pada penyakit autoimun. Berbagai uji klinis dilakukan untuk mengetahui manfaat pemberian vitamin D pada sklerosis multipel, artritis reumatoid, penyakit Crohn, diabetes tipe 2 dan lupus eritematosus sistemik (systemic lupus erythematosus, SLE). Pemberian suplementasi diharapkan dapat menurunkan keparahan aktivitas penyakit dan meningkatkan efek terapeutik obat lain.\(^2\)

Metabolisme vitamin D

Komponen aktif vitamin D yaitu 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3].\(^1\) Terdapat tiga sumber vitamin D yaitu sinar matahari, diet, dan suplemen vitamin D (gambar 1). Bentuk vitamin D ada dua yaitu ergokalsiferol (vitamin D2) dan kolekalsiferol (vitamin D3). Paparan sinar matahari merupakan sumber vitamin D dalam bentuk D3, sedangkan diet merupakan sumber Vitamin D2 dan D3. Sumber
vitamin D antara lain minyak ikan cod, keju, kuning telur, makerel, salmon, tuna, dan hati sapi. Beberapa makanan juga difortifikasi dengan vitamin D seperti susu, yoghurt, dan sereal. Suplemen vitamin D ada yang dalam bentuk vitamin D2 dan vitamin D3.5

Prekursor vitamin D yang terdapat pada membran plasma keratinosit di lapisan basal dan suprabasal epidermis dan fibroblas di lapisan dermis dikonversi menjadi previtamin D3. Vitamin D3 yang disintesis di kulit kemudian memasuki sirkulasi sistemik dan berikatan dengan vitamin D-binding protein. Vitamin D3 dapat disimpan di jaringan lemak subkutan sehingga memperpanjang waktu paruhnya.5 Vitamin D di sirkulasi dikonversi oleh hidroksilase di hati menjadi 25-hydroxyvitamin D (25(OH)D; kalsidiol). Kadar 25(OH)D di sirkulasi merupakan indikator status vitamin D. Waktu paruh 25(OH)D sekitar 15 hari. Sesuai kebutuhan 25(OH)D dikonversi di ginjal menjadi bentuk aktif yaitu 1,25-dihydroxyvitamin D (1,25(OH)2D; kalsitriol) yang dikontrol oleh hormon paratiroid.5 Selain di ginjal, berbagai sel juga dapat mengubah 25(OH)D menjadi bentuk aktif 1,25(OH)2D yang kemudian meregulasi berbagai proses dalam sel.1

Gambar 1. Metabolisme vitamin D5
Vitamin D memiliki efek genomik dan nongenomik (gambar 2). Efek nongenomik melalui reseptor di membran sel seperti reseptor rapid-response steroid-binding protein (1,25D3-MARRS) yang kemudian memengaruhi berbagai jalur sinal seperti phosphoinositides, Ca2+, cyclic GMP and MAP kinase. Efek genomik terjadi melalui ikatan vitamin D dengan reseptor vitamin D untuk meregulasi transkripsi gen. Reseptor vitamin D terdapat dalam berbagai sel. Reseptor vitamin D berinteraksi dengan retinoid X receptor (RXR) yang kemudian menempel pada vitamin D response element (VDRE). Terdapat banyak target gen yang teraktivasi oleh vitamin D, beberapa tertekan ekspresinya.

GENOMIC

![Diagram Genomic](image)

NON GENOMIC

![Diagram Nongenomic](image)

Gambar 2. Efek genomik dan nongenomik vitamin D

Defisiensi vitamin D dapat disebabkan oleh asupan yang kurang, paparan sinar matahari yang kurang, penurunan fungsi ginjal, serta absorpsi vitamin D yang tidak adekuat di saluran cerna. Faktor lingkungan, kebiasaan, usia, dan jenis kulit memengaruhi produksi vitamin D di kulit.

Vitamin D memengaruhi absorpsi kalsium di usus serta mempertahankan kadar kalsium dan fosfor di darah. Vitamin D berperan dalam pembentukan dan mineralisasi serta remodeling...
tulang. Defisiensi vitamin D meningkatkan kelemahan otot. Efek nonskeletal vitamin D meliputi efek regulasi pada sistem endokrin dan imunitas, fungsi kardiovaskular, sindrom metabolik, sarkopenia, disfungsi neurologis dan memori, kanker, serta penyakit ginjal kronik.4

Pengaruh vitamin D pada respons imun
Salah satu efek nonskeletal vitamin D yaitu pada respons imun. Kalsitriol memodulasi aktivasi, proliferasi dan diferensiasi sel imun. Selain itu, sel sel juga dapat mengonversi kalsidiol menjadi kalsitriol. Kalsitriol menurunkan produksi sitokin proinflamasi (IL-12, IFN-γ, IL-6, IL-8, tumor necrosis factor-α, IL-17, IL-9) dan meningkatkan produksi sitokin antiinflamasi (IL-4, IL-5, and IL-10). Regulasi sitokin tersebut terjadi melalui penghambatan aktivasi nuclear factor kappa-B (NF-kB) p65 melalui peningkatan NF-kB inhibitory protein IκBa.3

Kalsitriol juga meningkatkan pembentukan dan aktivasi sel T regulator (Treg) serta meningkatkan pembentukan sel dendritik yang tolerogenik. Sel dendritik merupakan antigen presenting cell yang berfungsi mempresentasikan antigen ke sel T yang kemudian berdiferensiasi menjadi sel efektor. Kalsitriol menurunkan ekspresi major histocompatibility complex (MHC) kelas II dan molekul kostimulasi di sel dendritik (CD40, CD80, CD86) sehingga bersifat tolerogenik yang akan mengaktivasi apoptosis pada sel T autoreaktif dan menginduksi diferensiasi Treg.3

Kalsitriol menginduksi produksi katelisidin yang memiliki aktivitas antimikroba dan menstimulasi diferensiasi monosit menjadi makrofag. Di sisi lain, kalsitriol menurunkan produksi faktor pro inflamasi seperti IL-1b, IL-6, tumor necrosis factor alpha (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), dan cyclooxygenase (COX-2) serta menginduksi sitokin antiinflamasi IL-10.3

Kalsitriol juga memiliki pengaruh terhadap limfosit B. Kalsitriol menghambat proliferasi sel B, immunoglobulin class switching, produksi antibodi, dan diferensiasi sel B menjadi sel plasma. Kalsitriol menginduksi apoptosis sel B serta meningkatkan produksi IL-10 oleh sel B.3
Kalsitriol menghambat produksi IFN-γ dan IL-2 oleh sel Th1. Pada sel Th2 kalsitriol menghambat produksi IL-4. Kalsitriol juga menghambat diferensiasi dan aktivasi sel Th17.\(^3\)

Peran vitamin D pada penyakit autoimun

Kadar vitamin D yang cukup menyebabkan adanya keseimbangan Th1/Th2 sehingga menghambat autoimunitas dan sel T autoreaktif.\(^6\) Pada berbagai penelitian didapatkan kadar 25(OH)D serum pada pasien dengan autoimun lebih rendah dibandingkan kontrol sehat. Pasien dengan kadar 25(OH)D yang rendah juga menunjukkan aktivitas penyakit yang lebih tinggi. Penelitian juga mendapatkan adanya hubungan polimorfisme reseptor vitamin D dengan penyakit autoimun.\(^2\)

Peningkatan *latitude* dan penurunan paparan sinar matahari berhubungan dengan kejadian sklerosis multipel dan diabetes tipe 1. Penelitian menunjukkan bahwa suplementasi 1,25(OH)\(_2\)D pada hewan coba dapat mencegah inisiasi dan progresivitas sklerosis multipel. Penelitian lain pada anak mendapatkan bahwa suplementasi vitamin D menurunkan risiko diabetes melitus tipe 1 hingga 30%.\(^1\)

Peningkatan *latitude* dan penurunan paparan sinar matahari juga berhubungan dengan kejadian *inflammatory bowel disease*. Defisiensi vitamin D dapat meningkatkan keparahan enterokolitis pada hewan coba *inflammatory bowel disease*.\(^2\)

Penelitian menunjukkan bahwa kadar vitamin D yang rendah juga berhubungan dengan peningkatan SLE, artritis reumatoid, sistemik sklerosis, dan polimiositis/dermatomiositis. Kadar vitamin D yang rendah berhubungan juga dengan peningkatan aktivitas penyakit pada SLE.\(^6\) Suplementasi dengan 1,25(OH)\(_2\)D dapat menurunkan keparahan SLE pada hewan coba. Suatu metaanalisis mendapatkan bahwa insidens artritis reumatoid berbanding terbalik dengan asupan vitamin D.\(^2\) Defisiensi vitamin D berhubungan dengan peningkatan aktivitas penyakit dan penurunan status fungsional pada artritis reumatoid.\(^6\) Penelitian menunjukkan bahwa suplementasi 1,25(OH)\(_2\)D pada hewan coba dapat mencegah inisiasi dan progresivitas artritis reumatoid.\(^2\) Pada pasien sklerosis sistemik didapatkan kadar vitamin D yang rendah berhubungan dengan beratnya kelainan kulit. Penelitian
in vitro menunjukkan penurunan ekspresi dan sinyal vitamin D berperan dalam proses fibrosis.⁶

Pada pasien autoimun lainnya yaitu ankylosing spondylitis didapatkan kadar vitamin D yang rendah berhubungan dengan peningkatan aktivitas penyakit. Penelitian pada pasien sindrom Sjogren mendapatkan kadar vitamin D lebih rendah pada pasien Sindrom Sjogren. Defisiensi vitamin D berat berhubungan dengan leukositopenia, limfoma, dan neuropati perifer. Pada pasien sindrom antifosfolipid defisiensi vitamin D didapatkan pada pasien dengan trombosis. Penelitian in vitro menunjukkan bahwa vitamin D menghambat ekspresi protein prokoagulan dan tissue factor yang diinduksi autoantibodi β2GPI. Pada pasien undifferentiated connective tissue disease, kadar vitamin D yang rendah berhubungan dengan progresivitas menjadi penyakit jaringan ikat yang definitif.⁵

Defisiensi vitamin D juga berhubungan dengan peningkatan sintesis estrogen perifer. Hal ini merupakan salah satu penjelasan mengapa penyakit autoimun lebih banyak ditemukan pada perempuan. Estrogen dapat memodulasi respons imun pada kondisi inflamasi.⁶

Penggunaan kortikosteroid pada pengobatan penyakit autoimun berhubungan dengan kadar vitamin D yang rendah dan ekspresi reseptor vitamin D di sel tulang. Kortikosteroid dapat meningkatkan degradasi 25(OH)D dan 1,25(OH)₂D yang kemudian meningkatkan katabolisme vitamin D dan pada akhirnya menyebabkan defisiensi vitamin D. Penggunaan kortikosteroid juga dapat menyebabkan perubahan turnover dan metabolisme tulang yang kemudian menyebabkan osteopenia, osteoporosis, dan osteomalasia.⁶

Dari berbagai penelitian mengenai vitamin D pada penyakit autoimun terdapat keterbatasan. Salah satu keterbatasannya yaitu tidak dapat menentukan apakah 25(OH)D yang rendah merupakan penyebab atau akibat penyakit autoimun karena yang dinilai adalah korelasi.² Selain itu, yang digunakan untuk mengukur kadar vitamin D adalah 25(OH)D, bukan bentuk yang aktif.³

Suplementasi vitamin D pada penyakit autoimun

Berdasarkan penelitian yang ada saat ini mengenai pengaruh suplementasi vitamin D masih belum dapat disimpulkan manfaat

efek samping yang serius. *Guideline* suplementasi dosis pada orang sehat menyatakan dosis aman maksimal yaitu 4000 IU kolekasiferol per hari. Meski demikian, pada pemberian 50.000 IU kolekasiferol per minggu selama 12 minggu atau 100.000 IU per minggu selama satu bulan dilanjutkan 100.000 IU per bulan selama 5 bulan tidak didapatkan efek samping.² Lama pemberian masih menjadi pertanyaan karena suplementasi vitamin D jangka panjang dapat menyebabkan hiperkalsemia, hiperkalsiuria/batu ginjal, atau jatuh pada usia lanjut.⁷,⁸
<table>
<thead>
<tr>
<th>Penelitian</th>
<th>Subjek</th>
<th>Disain</th>
<th>Kelompok</th>
<th>Suplementasi vitamin D</th>
<th>Suplementasi Baseline</th>
<th>25(OH)D pascaterapi</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burton dkk</td>
<td>Sklerosis multipel</td>
<td>Open</td>
<td>25</td>
<td>Hingga 280,000</td>
<td>IU/minggu dalam 23</td>
<td>80</td>
<td>Hingga 400 nmol/L, 200 ng/L pada uji klinis Proporsi pasien dengan peningkatan EDSS lebih rendah, penurunan relaps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>label</td>
<td>kolecalsife</td>
<td>1200 mg/hari</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT, 52</td>
<td>roi vs 24</td>
<td>minggu, diteruskan minggu, selanjutnya diturunkan menjadi 0 dalam 20 minggu, kemudian 3 minggu washout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mosayebi dkk</td>
<td>Sklerosis multipel</td>
<td>Double</td>
<td>28</td>
<td>300,000 IU perbulan (intramuskuclar)</td>
<td>tidak</td>
<td>25</td>
<td>150 Tidak ada efek pada EDSS atau pada Gd-enhancing lesions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blind</td>
<td>kolecalsife</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT, 6</td>
<td>roi vs 34</td>
<td>bulan, placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauti Hanninen dkk</td>
<td>Sklerosis multipel</td>
<td>Double blind</td>
<td>34</td>
<td>20.000 IU per minggu</td>
<td>Tidak</td>
<td>54</td>
<td>110</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT 12 bulan</td>
<td>kolekalsife rol vs 32 plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kampman dkk</th>
<th>Sklerosis multipel</th>
<th>Double blind</th>
<th>35</th>
<th>20.000 IU per minggu</th>
<th>500 mg per hari</th>
<th>55</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCT 96 minggu</td>
<td>kolekalsife rol vs 33 plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Derakshan dkk</th>
<th>Sklerosis multipel</th>
<th>Double blind</th>
<th>13</th>
<th>50.000 IU per minggu, setelah mencapai 250 umol/L switch ke dosis rumatan</th>
<th>Tidak</th>
<th>38</th>
<th>Tidak diketahui</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCT, 12 bulan</td>
<td>kolekalsife rol vs 11 plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salesi dan Farajzadeh an</th>
<th>Artritis reumatoid</th>
<th>Double blind</th>
<th>50</th>
<th>50.000 IU per minggu</th>
<th>Tidak</th>
<th>107</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCT 12 minggu</td>
<td>kolekalsife rol vs 48 plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Penurunan Gd-enhancing lesions.
Tren penurunan EDSS

Tidak ada manfaat pada EDSS, risiko relap, fungsi, atau fatigue

Penurunan rasio insidens plak demielinisasi, penurunan risiko progresi ke sklerosis multipel

Perbaikan tidak signifikan pada nyeri sendi, sendi yang bengkak, LED, dan VAS
<table>
<thead>
<tr>
<th>Penelitian</th>
<th>Subjek</th>
<th>Disain</th>
<th>Kelompok</th>
<th>Suplementasi vitamin D</th>
<th>Suplementasi kalsium</th>
<th>Baseline 25(OH)D (nmol/L)</th>
<th>25(OH)D pascaterapi (nmol/L)</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehghan</td>
<td>Arthritis</td>
<td>Double</td>
<td>40</td>
<td>50.000 IU per minggu</td>
<td>Tidak</td>
<td><75</td>
<td>Tidak diketahui</td>
<td>Tidak ada penurunan signifikan laju relaps</td>
</tr>
<tr>
<td>dkk</td>
<td>reumatoid</td>
<td>blind</td>
<td>RCT, 6</td>
<td>kolekalsife</td>
<td>rol vs 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bulan</td>
<td>plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen</td>
<td>Arthritis</td>
<td>Double</td>
<td>11</td>
<td>4 minggu: 50.000 IU</td>
<td>500 mg 3x per hari</td>
<td>63</td>
<td>75 setelah 2 bulan</td>
<td>Tidak ada efek terhadap DAS28, HAQ atau PGA. Peningkatan neyri non signifikan. Perbaikan evaluasi pasien berdasarkan kesehatan global</td>
</tr>
<tr>
<td>dkk</td>
<td>reumatoid</td>
<td>blind</td>
<td>RCT 12</td>
<td>kolekalsife</td>
<td>3x/minggu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bulan</td>
<td>rol vs 11</td>
<td>11 bulan: 50.000 IU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plasebo</td>
<td>2x/minggu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ketika di bawah 62.5 mmol/L: 50.000 IU per minggu selama 8 minggu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jorgensen</td>
<td>Penyakit</td>
<td>Double</td>
<td>46</td>
<td>1200 IU per hari</td>
<td>1200 mg per hari</td>
<td>70</td>
<td>95</td>
<td>Trend memaju penurunan relaps</td>
</tr>
<tr>
<td>dkk</td>
<td>Crohn</td>
<td>blind</td>
<td>RCT, 1</td>
<td>kolekalsife</td>
<td>rol vs 48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tahun</td>
<td>plasebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wingate</td>
<td>Penyakit</td>
<td>Double</td>
<td>400 atau 2000 IU</td>
<td>Tidak</td>
<td>63</td>
<td>70 (400 IU)</td>
<td>Tidak ada perbedaan pada CDAl, LED, atau CRP</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>------------------</td>
<td>-------</td>
<td>----</td>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>dkk</td>
<td>Crohn</td>
<td>blind</td>
<td>tergantung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT 6</td>
<td>randomisasi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raftery</td>
<td>Penyakit</td>
<td>Double</td>
<td>13</td>
<td>Hanya bila</td>
<td>70</td>
<td>90</td>
<td>Permeabilitas saluran cerna stabil, penurunan CRP, peningkatan Qol, dan penurunan CDAI pada psien dengan 25(OH)D >75 nmol/L</td>
<td></td>
</tr>
<tr>
<td>dkk</td>
<td>Crohn</td>
<td>blind</td>
<td>kolekalsife</td>
<td>telah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RCT, 3</td>
<td>roi vs 14</td>
<td>diberikan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bulan</td>
<td>plasebo</td>
<td>Selintuhnya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li dkk</td>
<td>DMT1</td>
<td>Prospekti</td>
<td>17</td>
<td>0.25 μg dua kali per hari</td>
<td>tidak</td>
<td>63</td>
<td>Tidak diketahui</td>
<td>FCP stabil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f, RCT,</td>
<td>alfakalcidi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 bulan</td>
<td>ol vs 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tampak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>suplemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penelitian</td>
<td>Subjek</td>
<td>Disain</td>
<td>Kelompok</td>
<td>Suplementasi vitamin D</td>
<td>Suplementasi kalsium</td>
<td>Baseline 25(OH)D (nmol/L)</td>
<td>25(OH)D pascaterapi (nmol/L)</td>
<td>Hasil</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Bizzarri dkk</td>
<td>DMT1</td>
<td>Double blind</td>
<td>15</td>
<td>0,25 μg per hari</td>
<td>Tidak</td>
<td><50</td>
<td>+3.9%</td>
<td>Penurunan FCP lebih lambat</td>
</tr>
<tr>
<td>Walter dkk</td>
<td>DMT1</td>
<td>Double blind</td>
<td>20</td>
<td>0,25 μg per hari</td>
<td>Tidak: 25</td>
<td>30</td>
<td>Tidak ada perubahan pada C-peptide atau dosis insulin</td>
<td></td>
</tr>
<tr>
<td>Gabbay dkk</td>
<td>DMT1</td>
<td>Double blind</td>
<td>17</td>
<td>2000 IU per hari</td>
<td>Tidak: 65</td>
<td>150</td>
<td>Penurunan progresi ke C-peptida yang tidak terdeteksi</td>
<td></td>
</tr>
<tr>
<td>Ataiie Jafari DMTI</td>
<td>Single blind</td>
<td>29</td>
<td>0,25 µg per hari atau dua kali bila kadar kalsium</td>
<td>Tidak</td>
<td>32.5</td>
<td>Tidak diketahui</td>
<td>Preservasi C peptide lebih baik dan dosis insulin lebih rendah</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>----</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Abou Raya SLE dkk</td>
<td>Double blind</td>
<td>158</td>
<td>2000 IU per hari</td>
<td>Ya, dosis tidak tahu</td>
<td>50</td>
<td>98</td>
<td>Pemuruan SLEDAI dan LED</td>
<td></td>
</tr>
<tr>
<td>Lima dkk SLE</td>
<td>Double blind</td>
<td>20</td>
<td>30,000 IU per hari</td>
<td>Tidak</td>
<td>30</td>
<td>78</td>
<td>Pemuruan SLEDAI dan kecendrungan pemuruan</td>
<td></td>
</tr>
<tr>
<td>Aranow SLE dkk</td>
<td>Double blind</td>
<td>2000 IU atau 4000 IU per hari</td>
<td>Tidak</td>
<td>28</td>
<td>75</td>
<td>Tidak ada perbedaan pada IFN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: CDAI, Crohn's disease activity index; CRP, C-reactive protein; DAS, disease activity score; ECLAM, European consensus lupus activity measurement; EDSS, Expanded Disability Status Scale; FCP, fasting c-peptide; Gd, gadolinium; HAQ, health assessment questionnaire; IFN, interferon; IU, International Units; LED, laju endap darah; PCP, C-peptide after 75 g glucose; PGA, physicians general assessment; Qol., quality of life; RCT, randomized controlled trial; SLE, systemic lupus erythematosus; SLEDAI, systemic lupus erythematosus disease activity index; DAS28, disease activity score for 28 joints; VAS, visual analog scale.
Simpulan

Kepustakaan